In this note, by means of the spectrum of the generating operator, we characterize the self-adjointness and closedness of the range of a normal and a self-adjoint Jordan *-derivation, respectively.
@article{118710, author = {Lajos Moln\'ar}, title = {On the range of a normal Jordan $^*$-derivation}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {691-695}, zbl = {0821.47028}, mrnumber = {1321239}, language = {en}, url = {http://dml.mathdoc.fr/item/118710} }
Molnár, Lajos. On the range of a normal Jordan $^*$-derivation. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 691-695. http://gdmltest.u-ga.fr/item/118710/
Properties which normal operators share with normal derivations and related operators, Pacific J. Math. 61 (1975), 313-325. (1975) | MR 0412889 | Zbl 0324.47018
C*-algebras and derivation ranges, Acta Sci. Math. 40 (1978), 211-227. (1978) | MR 0515202 | Zbl 0406.46048
The range of a normal derivation, Pacific J. Math. 58 (1975), 105-122. (1975) | MR 0380490 | Zbl 0275.47010
The range of Jordan *-derivation, submitted.
Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157-165. (1991) | MR 1100685
Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc., to appear. | MR 1158008
Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 120 (1994), 515-519. (1994) | MR 1186136
On the range of a hyponormal derivation, Proc. Amer. Math. Soc. 52 (1975), 117-120. (1975) | MR 0377575 | Zbl 0315.47019
On self-adjoint derivation ranges, Pacific J. Math. 82 (1979), 257-277. (1979) | MR 0549849 | Zbl 0427.47025