Non-linear second order parabolic systems in the divergent form are considered. It is proved that under some restrictions on the modulus of ellipticity, all weak solutions are continuous.
@article{118708, author = {E. A. Kalita}, title = {On the H\"older continuity of solutions of nonlinear parabolic systems}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {675-680}, zbl = {0814.35011}, mrnumber = {1321237}, language = {en}, url = {http://dml.mathdoc.fr/item/118708} }
Kalita, E. A. On the Hölder continuity of solutions of nonlinear parabolic systems. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 675-680. http://gdmltest.u-ga.fr/item/118708/
On sharp exponent of smoothness of solutions to the second order elliptic systems (in Russian), Izvestija Vyshyh Uchebnych Zavedenij. Matematika (1992), 3 10-17. (1992) | MR 1204810
Regularity of solutions of quasilinear elliptic systems, Teubner Leipzig (1985). (1985) | MR 0825485 | Zbl 0581.35003
Regularity of solutions for some quasilinear parabolic systems, Math. Nachr. 162 (1993), 59-88. (1993) | MR 1239576 | Zbl 0811.35064
Regularity results for some classes of higher order non linear elliptic systems, J. Reine Angew. Math. 311/312 145-169. | MR 0549962 | Zbl 0409.35015