Analytic functions are $\Cal I$-density continuous
Ciesielski, Krzysztof ; Larson, Lee
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994), p. 645-652 / Harvested from Czech Digital Mathematics Library

A real function is $\Cal I$-density continuous if it is continuous with the $\Cal I$-density topology on both the domain and the range. If $f$ is analytic, then $f$ is $\Cal I$-density continuous. There exists a function which is both $C^\infty $ and convex which is not $\Cal I$-density continuous.

Publié le : 1994-01-01
Classification:  26A21,  26E05,  26E10
@article{118706,
     author = {Krzysztof Ciesielski and Lee Larson},
     title = {Analytic functions are $\Cal I$-density continuous},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {35},
     year = {1994},
     pages = {645-652},
     zbl = {0826.26011},
     mrnumber = {1321235},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118706}
}
Ciesielski, Krzysztof; Larson, Lee. Analytic functions are $\Cal I$-density continuous. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 645-652. http://gdmltest.u-ga.fr/item/118706/

Aversa V.; Wilczyński W. Homeomorphisms preserving $\Cal I$-density points, Boll. Un. Mat. Ital. B(7)1 (1987), 275-285. (1987) | MR 0895464

Ciesielski K.; Larson L. The space of density continuous functions, Acta Math. Hung. 58 (1991), 289-296. (1991) | MR 1153484 | Zbl 0757.26006

Poreda W.; Wagner-Bojakowska E.; Wilczyński W. A category analogue of the density topology, Fund. Math. 75 (1985), 167-173. (1985) | MR 0813753

Wilczyński W. A generalization of the density topology, Real Anal. Exchange 8(1) (1982-83), 16-20. (1982-83)

Wilczyński W. A category analogue of the density topology, approximate continuity, and the approximate derivative, Real Anal. Exchange 10 (1984-85), 241-265. (1984-85) | MR 0790803