Systems of nonlinear delay integral equations modelling population growth in a periodic environment
Cañada, Antonio ; Zertiti, Abderrahim
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994), p. 633-644 / Harvested from Czech Digital Mathematics Library

In this paper we study the existence and uniqueness of positive and periodic solutions of nonlinear delay integral systems of the type $$ x(t) = \int_{t-\tau _1}^t f(s,x(s),y(s))\,ds $$ $$ y(t) = \int_{t-\tau _2}^t g(s,x(s),y(s))\,ds $$ which model population growth in a periodic environment when there is an interaction between two species. For the proofs, we develop an adequate method of sub-supersolutions which provides, in some cases, an iterative scheme converging to the solution.

Publié le : 1994-01-01
Classification:  34K15,  45G10,  45G15,  45M15,  45M20,  92D25
@article{118705,
     author = {Antonio Ca\~nada and Abderrahim Zertiti},
     title = {Systems of nonlinear delay integral equations modelling population growth  in a periodic environment},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {35},
     year = {1994},
     pages = {633-644},
     zbl = {0816.45002},
     mrnumber = {1321234},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118705}
}
Cañada, Antonio; Zertiti, Abderrahim. Systems of nonlinear delay integral equations modelling population growth  in a periodic environment. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 633-644. http://gdmltest.u-ga.fr/item/118705/

Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, Siam Review 18 (1976), 620-709. (1976) | MR 0415432 | Zbl 0345.47044

Ca Nada A. Method of upper and lower solutions for nonlinear integral equations and an application to an infectious disease model, in ``Dynamics of Infinite Dimensional Systems'', S.N. Chow and J.K. Hale editors, Springer-Verlag, Berlin, Heidelberg, 1987, 39-44. | MR 0921896

Ca Nada A.; Zertiti A. Method of upper and lower solutions for nonlinear delay integral equations modelling epidemics and population growth, $M^3AS$, Math. Models and Methods in Applied Sciences 4 (1994), 107-120. (1994) | MR 1259204

Ca Nada A.; Zertiti A. Topological methods in the study of positive solutions for some nonlinear delay integral equations, to appear in J. Nonlinear Analysis. | MR 1305767

Cooke K.L.; Kaplan J.L. A periodic threshold theorem for epidemics and population growth, Math. Biosciences 31 (1976), 87-104. (1976) | MR 0682251

Guo D.; Lakshmikantham V. Positive solutions of integral equations arising in infectious diseases, J. Math. Anal. Appl. 134 (1988), 1-8. (1988) | MR 0958849

Krasnoselskii M.A. Positive solutions of operator equations, P. Noordhoff, Groningen, The Netherlands, 1964. | MR 0181881

Nussbaum R.D. A periodicity threshold theorem for some nonlinear integral equations, Siam J. Math. Anal. 9 (1978), 356-376. (1978) | MR 0477924 | Zbl 0385.45007

Smith H.L. On periodic solutions of a delay integral equations modelling epidemics, J. Math. Biology 4 (1977), 69-80. (1977) | MR 0504059

Torrejon R. A note on a nonlinear integral equation from the theory of epidemics, J. Nonl. Anal. 14 (1990), 483-488. (1990) | MR 1044076 | Zbl 0695.45008