Interval Orders and Reverse Mathematics
Marcone, Alberto
Notre Dame J. Formal Logic, Tome 48 (2007) no. 1, p. 425-448 / Harvested from Project Euclid
We study the reverse mathematics of interval orders. We establish the logical strength of the implications among various definitions of the notion of interval order. We also consider the strength of different versions of the characterization theorem for interval orders: a partial order is an interval order if and only if it does not contain 2 \oplus 2. We also study proper interval orders and their characterization theorem: a partial order is a proper interval order if and only if it contains neither 2 \oplus 2 nor 3 \oplus 1.
Publié le : 2007-07-14
Classification:  reverse mathematics,  interval orders,  proper interval orders,  03B30,  06A06,  03D45
@article{1187031412,
     author = {Marcone, Alberto},
     title = {Interval Orders and Reverse Mathematics},
     journal = {Notre Dame J. Formal Logic},
     volume = {48},
     number = {1},
     year = {2007},
     pages = { 425-448},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1187031412}
}
Marcone, Alberto. Interval Orders and Reverse Mathematics. Notre Dame J. Formal Logic, Tome 48 (2007) no. 1, pp.  425-448. http://gdmltest.u-ga.fr/item/1187031412/