We determine explicitly the local structure of a semi-symmetric $\frak P$-space.
@article{118697, author = {Eric Boeckx}, title = {Semi-symmetric $\frak P$-spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {565-573}, zbl = {0816.53010}, mrnumber = {1307284}, language = {en}, url = {http://dml.mathdoc.fr/item/118697} }
Boeckx, Eric. Semi-symmetric $\frak P$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 565-573. http://gdmltest.u-ga.fr/item/118697/
Symmetric-like Riemannian manifolds and geodesic symmetries, Proc. Royal Soc. Edingurgh, Sect. A, to appear. | MR 1331561
Two natural generalizations of locally symmetric spaces, Diff. Geom. Appl. 2 (1992), 57-80. (1992) | MR 1244456 | Zbl 0747.53013
Geodesic spheres and generalizations of symmetric spaces, Boll. Un. Nat. Ital. 7-A (1993), 125-134. (1993) | MR 1215106 | Zbl 0778.53043
Geodesic sprays and $\frak C$- and $\frak P$-spaces, Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), 343-358. (1992) | MR 1261447
Einstein-like semi-symmetric spaces, Arch. Math. (Brno) 29 (1993), 235-240. (1993) | MR 1263125 | Zbl 0807.53041
Asymptotically foliated semi-symmetric spaces, preprint, 1993. | MR 1369387 | Zbl 0846.53031
Non-homogeneous relatives of symmetric spaces, Diff. Geom. Appl., to appear. | Zbl 0796.53046
Natural generalizations of locally symmetric spaces, Indian J. Pure Appl. Math. 24 (1993), 231-240. (1993) | MR 1218533 | Zbl 0772.53029
An explicit classification of $3$-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$, preprint, 1991. | MR 1408298 | Zbl 0879.53014
Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$, I, Local version, J. Diff. Geom. 17 (1982), 531-582. (1982) | MR 0683165
Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$, II, Global versions, Geom. Dedicata 19 (1985), 65-108. (1985) | MR 0797152