Note on dense covers in the category of locales
Paseka, Jan
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994), p. 549-552 / Harvested from Czech Digital Mathematics Library

In this note we are going to study dense covers in the category of locales. We shall show that any product of finitely regular locales with some dense covering property has this property as well.

Publié le : 1994-01-01
Classification:  06A23,  06B23,  06D20,  18A30,  54B10,  54C30,  54D20
@article{118695,
     author = {Jan Paseka},
     title = {Note on dense covers in the category of locales},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {35},
     year = {1994},
     pages = {549-552},
     zbl = {0807.06007},
     mrnumber = {1307282},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118695}
}
Paseka, Jan. Note on dense covers in the category of locales. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 549-552. http://gdmltest.u-ga.fr/item/118695/

Dowker C.H.; Strauss D. Sums in the category of frames, Houston J. Math. 3 (1976), 17-32. (1976) | MR 0442900 | Zbl 0332.54005

Engelking R. General Topology, Polish Scientific Publishers, Warsaw, 1977. | MR 0500780 | Zbl 0684.54001

Johnstone P.T. Stone Spaces, Cambridge Univ. Press, Cambridge, 1982. | MR 0698074 | Zbl 0586.54001

Kovár M. Finitely Regular and Finitely Normal Topological Spaces (in Czech), Masaryk University, Brno, 1989.

Kříž I. A constructive proof of the Tychonoff's theorem for locales, Comment. Math. Univ. Carolinae 26 (1985), 619-630. (1985) | MR 0817832 | Zbl 0661.54027

Kunen K.; Vaughan J.E. Handbook of Set-Theoretic Topology, North Holland, Amsterdam, 1984. | MR 0776619 | Zbl 0674.54001

Madden J.; Vermeer J. Lindelöf locales and realcompactness, Math. Proc. Cambridge Philos. Soc. 99 (1986), 473-480. (1986) | MR 0830360 | Zbl 0603.54021

Paseka J. Products in the category of locales: which properties are preserved?, Discrete Mathematics 108 (1992), 63-73. (1992) | MR 1189830 | Zbl 0759.18005