Continuous selections, $G_\delta $-subsets of Banach spaces and usco mappings
Gutev, Valentin G.
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994), p. 533-538 / Harvested from Czech Digital Mathematics Library

Every l.s.c\. mapping from a paracompact space into the non-empty, closed, convex subsets of a (not necessarily convex) $G_\delta $-subset of a Banach space admits a single-valued continuous selection provided every such mapping admits a convex-valued usco selection. This leads us to some new partial solutions of a problem raised by E. Michael.

Publié le : 1994-01-01
Classification:  46B20,  46N10,  54C60,  54C65,  54F45
@article{118693,
     author = {Valentin G. Gutev},
     title = {Continuous selections, $G\_\delta $-subsets of Banach spaces and usco mappings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {35},
     year = {1994},
     pages = {533-538},
     zbl = {0840.54023},
     mrnumber = {1307280},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118693}
}
Gutev, Valentin G. Continuous selections, $G_\delta $-subsets of Banach spaces and usco mappings. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 533-538. http://gdmltest.u-ga.fr/item/118693/

Gutev V. Open mappings looking like projections, Set-valued Analysis 1 (1993), 247-260. (1993) | MR 1249265 | Zbl 0818.54011

Michael E. Continuous selections I, Ann. of Math. 63 (1956), 361-382. (1956) | MR 0077107 | Zbl 0071.15902

Michael E. Continuous selections II, Ann. of Math. 64 (1956), 562-580. (1956) | MR 0080909 | Zbl 0073.17702

Michael E. A theorem on semi-continuous set-valued functions, Duke Math. J. 26:4 (1959), 647-656. (1959) | MR 0109343 | Zbl 0151.30805

Michael E. Continuous selections avoiding a set, Top. Appl. 28 (1988), 195-213. (1988) | MR 0931523 | Zbl 0654.54014

Michael E. , in Open problems in Topology, J. van Mill and J.M. Reed, Chapter 17, 272-278, North-Holland, Amsterdam 1990. | MR 1078636 | Zbl 1171.90455

Michael E. Some refinements of a selection theorem with 0-dimensional domain, Fund. Math. 140 (1992), 279-287. (1992) | MR 1173768 | Zbl 0763.54015

J. Van Mill Infinite Dimensional Topology, Prerequisites and Introduction, North-Holland, Amsterdam, 1989. | MR 0977744 | Zbl 1027.57022

Nedev S. Selection and factorization theorems for set-valued mappings, Serdica 6 (1980), 291-317. (1980) | MR 0644284 | Zbl 0492.54006