We prove that if there is a model of set-theory which contains no first countable, locally compact, scattered, countably paracompact space $X$, whose Tychonoff square is a Dowker space, then there is an inner model which contains a measurable cardinal.
@article{118690, author = {Chris Good}, title = {Large cardinals and Dowker products}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {515-522}, zbl = {0816.03022}, mrnumber = {1307277}, language = {en}, url = {http://dml.mathdoc.fr/item/118690} }
Good, Chris. Large cardinals and Dowker products. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 515-522. http://gdmltest.u-ga.fr/item/118690/
A Dowker product, Trans. Amer. Math. Soc. 292 (1985), 519-530. (1985) | MR 0808735
Another Dowker product, Top. Appl. 36 (1990), 553-264. (1990) | MR 1070704
Yet another Dowker product, preprint. | MR 1261168
Constructability, Springer Verlag Berlin (1984). (1984) | MR 0750828
The covering lemma for K, Ann. Math. Logic 22 (1982), 1-30. (1982) | MR 0661475 | Zbl 0492.03014
On countably paracompact spaces, Canad. J. Math. 3 (1951), 219-224. (1951) | MR 0043446 | Zbl 0042.41007
General Topology, Heldermann Verlag Berlin (1989). (1989) | MR 1039321 | Zbl 0684.54001
The normal Moore space conjecture and large cardinals, {in: [KV]} 733-760. | MR 0776635 | Zbl 0562.54039
Large cardinals and small Dowker spaces, to appear in Proc. Amer. Math. Soc. | MR 1216813 | Zbl 0821.03025
Set Theory, An Introduction to Independence Proofs, North Holland Amsterdam (1984). (1984) | MR 0756630
Handbook of Set-Theoretic Topology, North Holland Amsterdam (1984). (1984) | MR 0776619 | Zbl 0546.00022
Dowker spaces, in: [KV] 761-780. | MR 0776636 | Zbl 0566.54009
Products with a metric factor, Gen. Top. Appl. 5 1975 235-248. (1975) | MR 0380709 | Zbl 0305.54010