The paper describes the special situation of barotropic nonnewtonian fluid, where stress tensor can be written in the form of potentials which depend on $e_{ij}$ and $(\frac {\partial e_{ij}}{\partial x_k})$. For this case, we prove the existence and uniqueness of weak solution.
@article{118687, author = {\v S\'arka Matu\v s\r u-Ne\v casov\'a and M\'aria Medvi\v dov\'a}, title = {Bipolar barotropic nonnewtonian fluid}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {467-483}, zbl = {0809.76001}, mrnumber = {1307274}, language = {en}, url = {http://dml.mathdoc.fr/item/118687} }
Matušů-Nečasová, Šárka; Medviďová, Mária. Bipolar barotropic nonnewtonian fluid. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 467-483. http://gdmltest.u-ga.fr/item/118687/
Sobolev spaces, Academic Press, New York, San Francisco, London, 1975. | MR 0450957
Multipolar viscous fluids, Quart. of Appl. Math. XLIX (1991), 247-266. (1991) | MR 1106391
Global solutions to the compressible isothermal multipolar fluid, J. Math. Anal. Appl. (1991). (1991) | MR 1135273
Global solutions to the viscous compressible barotropic multipolar gas, Theoret. Comp. Fluid Dynamics 4 (1992). (1992)
Some qualitative properties of the viscous compressible heat conductive multipolar fluid, Commun. in Part. Dif. Eq. 16 (1991). (1991) | MR 1104099
Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod, Paris, 1969, .
Functional Spaces, Academia Prague, 1977.
Measure valued solutions to nonnewtonian incompressible fluids in bounded domains, to appear.
Les méthodes directes en théorie des équations elliptiques, Prague, 1967. | MR 0227584
Global solution to the isothermal compressible bipolar fluid in a finite channel with nonzero input and output, Applications of Mathematics 36 (1991), 46-71. (1991) | MR 1093482
Theory of multipolar viscous fluids, The Mathematics of Finite Elements and Applications VII (1991), 233-244. (1991) | MR 1132501
Phenomenical behaviour of multipolar viscous fluid, to appear in the Quaterly Appl. Math.
Sur les normes équivalentes dans $ W_p^k(Ømega)$ et sur la coercivité des formes formellement positives, Les presses de l'Université de Montréal, 1966.