Let $f : [a,b] \times \Bbb R^{n+1} \rightarrow \Bbb R$ be a Carath'{e}odory's function. Let $ \{t_{h}\} $, with $t_{h} \in [a,b]$, and $\{x_{h}\}$ be two real sequences. In this paper, the family of boundary value problems $$ \cases x^{(k)} = f \left( t,x,x',\ldots ,x^{(n)} \right) \ x^{(i)}(t_{i}) = x_{i} \,, \quad i=0,1, \ldots , k-1 \endcases \qquad (k=n+1,n+2,n+3,\ldots ) $$ is considered. It is proved that these boundary value problems admit at least a solution for each $k \geq \nu$, where $\nu \geq n+1$ is a suitable integer. Some particular cases, obtained by specializing the sequence $\{t_{h}\}$, are pointed out. Similar results are also proved for the Picard problem.
@article{118686, author = {Armando Majorana and Salvatore A. Marano}, title = {Boundary value problems for higher order ordinary differential equations}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {451-466}, zbl = {0809.34034}, mrnumber = {1307273}, language = {en}, url = {http://dml.mathdoc.fr/item/118686} }
Majorana, Armando; Marano, Salvatore A. Boundary value problems for higher order ordinary differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 451-466. http://gdmltest.u-ga.fr/item/118686/
Handbook of Mathematical functions with Formulas, Graphs, and Mathematical Tables, Dover Publ., New York, 1972. | MR 0208797
Boundary Value Problems for Higher Order Differential Equations, World Sci. Publ., Singapore, 1986. | MR 1021979 | Zbl 0921.34021
An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974. | MR 0445048
Sur les fonctions régulierèment monotones, Atti Congresso Int. Mat. Bologna 1928, vol. 2 (1930), 267-275.
On some properties of cyclically monotonic functions, Izvestiya Akad. Nauk SSSR, Ser. Mat. 14 (1950), 381-404. (1950) | MR 0037885
Higher order ordinary differential equations, Differential Integral Equations 6 (1993), 1119-1123. (1993) | MR 1230485
Istituzioni di Analisi Funzionale Lineare - I, Unione Matematica Italiana, 1978.
Ordinary Differential Equations in $\Bbb R^n$ (Problems and Methods), Springer-Verlag, New York, 1984. | MR 0740539 | Zbl 1220.68090
On the zeros of successive derivatives of integral functions, Trans. Amer. Math. Soc. 40 (1936), 12-23. (1936) | MR 1501863
Interpolatory Function Theory, Stechert-Hafner Service Agency, New York, 1964. | MR 0185330
Su un problema di valori al contorno per equazioni differenziali ordinarie di ordine $n$, Rend. Sem. Mat. Univ. Padova 12 (1941), 114-122. (1941) | MR 0017834