The existence, uniqueness and regularities of the generalized global solutions and classical global solutions to the equation $$ u_t=-A(t)u_{x^4}+B(t)u_{x^2}+g(u)_{x^2}+f(u)_{x}+h(u_{x})_{x}+G(u) $$ with the initial boundary value conditions $$ u(-\ell ,t)=u(\ell ,t)=0,\quad u_{x^2}(-\ell ,t)=u_{x^2}(\ell ,t)=0,\quad u(x,0)=\varphi (x), $$ or with the initial boundary value conditions $$ u_{x}(-\ell ,t)=u_{x}(\ell ,t)=0,\quad u_{x^3}(-\ell ,t)=u_{x^3}(\ell ,t)=0,\quad u(x,0)=\varphi (x), $$ are proved. Moreover, the asymptotic behavior of these solutions is considered under some conditions.
@article{118684, author = {Guo Wang Chen}, title = {Classical global solutions of the initial boundary value problems for a class of nonlinear parabolic equations}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {431-443}, zbl = {0808.35049}, mrnumber = {1307271}, language = {en}, url = {http://dml.mathdoc.fr/item/118684} }
Chen, Guo Wang. Classical global solutions of the initial boundary value problems for a class of nonlinear parabolic equations. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 431-443. http://gdmltest.u-ga.fr/item/118684/
A generalized diffusion model for growth and dispersal in population, J. Math. Biol. 12 (1981), 237-249. (1981) | MR 0624561
Linear Differential Operators, Moscow, 1954. | MR 0067292 | Zbl 0227.34020
Sobolev Spaces, Springer-Verlag, 1985. | MR 0817985 | Zbl 0692.46023
The nonlinear hyperbolic systems of higher order of generalized Sine-Gordon type (in Chinese), Acta Math. Sinica 26 (1983), 234-249. (1983) | MR 0694886
First boundary problems for nonlinear parabolic and hyperbolic coupled systems of higher order, Chinese Journal of Contemporary Mathematics 9 (1988), 98-116. (1988) | MR 0997346
Integral representation of generalized diffusion model in population problems, Journal of Integral Equations 6 (1984), 175-185. (1984) | MR 0733043
Initial value problem for a class of nonlinear parabolic system of fourth- order, Acta Mathematica Scientia 11 (1991), 393-400. (1991) | MR 1174369