We present a forcing construction of a Hausdorff zero-dimensional Lindelöf space $X$ whose square $X^2$ is again Lindelöf but its cube $X^3$ has a closed discrete subspace of size ${\frak c}^+$, hence the Lindelöf degree $L(X^3) = {\frak c}^+ $. In our model the Continuum Hypothesis holds true. After that we give a description of a forcing notion to get a space $X$ such that $L(X^n) = \aleph_0$ for all positive integers $n$, but $L(X^{\aleph_0}) = {\frak c}^+ = \aleph_2$.
@article{118678, author = {Isaac Gorelic}, title = {On powers of Lindel\"of spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {383-401}, zbl = {0815.54015}, mrnumber = {1286586}, language = {en}, url = {http://dml.mathdoc.fr/item/118678} }
Gorelic, Isaac. On powers of Lindelöf spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 383-401. http://gdmltest.u-ga.fr/item/118678/
On some problems in general topology, preprint, 1978. | MR 1367138 | Zbl 0847.54004
Cardinal Functions II, in: K. Kunen and J.E. Vaughan, eds., Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984. | MR 0776621
Lindelöf spaces à la Shelah, Coll. Mat. Soc. Bolyai, Budapest, 1978.
The Baire Category and forcing large Lindelöf spaces with points $G_\delta$, Proceedings Amer. Math. Soc. 118 (1993), 603-607. (1993) | MR 1132417
Cardinal Functions, in: M. Hušek and J. van Mill, eds., Recent Progress in General Topology, North-Holland, 1992. | MR 1229134
Normality and paracompactness in finite and countable cartesian products, Fund. Math. 105 (1980), 87-104. (1980) | MR 0561584 | Zbl 0438.54021
Set Theory, North-Holland, Amsterdam, 1980. | MR 0597342 | Zbl 0960.03033