I discuss the number of iterations of the elementary sequential closure operation required to achieve the full sequential closure of a set in spaces of the form $C_p(X)$.
@article{118677, author = {David H. Fremlin}, title = {Sequential convergence in $C\_p(X)$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {371-382}, zbl = {0827.54002}, mrnumber = {1286585}, language = {en}, url = {http://dml.mathdoc.fr/item/118677} }
Fremlin, David H. Sequential convergence in $C_p(X)$. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 371-382. http://gdmltest.u-ga.fr/item/118677/
New classes of $\Cal L_p$ spaces, Springer, 1981 (Lecture Notes in Mathematics 889). | MR 0639014
Normed Spaces, Springer, 1962. | Zbl 0316.46010
The integers and topology, pp. 111-167 in 11. | MR 0776622 | Zbl 0561.54004
An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367. (1951) | MR 0044116 | Zbl 0043.38105
General Topology, Heldermann, 1989. | MR 1039321 | Zbl 0684.54001
Supplement to ``Convergent sequences in $C_p(X)$'', University of Essex Mathematics Department Research Report 92-14.
Some properties of $C(X)$, Topology Appl. 14 (1982), 151-161. (1982) | MR 0667661 | Zbl 0503.54020
Topology and Normed Spaces, Chapman & Hall, 1974. | MR 0463890 | Zbl 0285.46002
Descriptive Set Theory and Sets of Uniqueness, Cambridge U.P., 1987. | MR 0953784
Topologische Lineare Räume, Springer, 1960. | MR 0130551
Handbook of Set-Theoretic Topology, North-Holland, 1984. | MR 0776619 | Zbl 0674.54001
Topology, vol I., Academic, 1966. | MR 0217751 | Zbl 0849.01044
On the length of Borel hierarchies, Ann. Math. Logic 16 (1979), 233-267. (1979) | MR 0548475 | Zbl 0415.03038