Analysis of top-swap shuffling for genome rearrangements
Bhatnagar, Nayantara ; Caputo, Pietro ; Tetali, Prasad ; Vigoda, Eric
Ann. Appl. Probab., Tome 17 (2007) no. 1, p. 1424-1445 / Harvested from Project Euclid
We study Markov chains which model genome rearrangements. These models are useful for studying the equilibrium distribution of chromosomal lengths, and are used in methods for estimating genomic distances. The primary Markov chain studied in this paper is the top-swap Markov chain. The top-swap chain is a card-shuffling process with n cards divided over k decks, where the cards are ordered within each deck. A transition consists of choosing a random pair of cards, and if the cards lie in different decks, we cut each deck at the chosen card and exchange the tops of the two decks. We prove precise bounds on the relaxation time (inverse spectral gap) of the top-swap chain. In particular, we prove the relaxation time is Θ(n+k). This resolves an open question of Durrett.
Publié le : 2007-08-14
Classification:  Card shuffling,  genome rearrangement,  random transpositions,  relaxation time,  60J27,  92D10
@article{1186755245,
     author = {Bhatnagar, Nayantara and Caputo, Pietro and Tetali, Prasad and Vigoda, Eric},
     title = {Analysis of top-swap shuffling for genome rearrangements},
     journal = {Ann. Appl. Probab.},
     volume = {17},
     number = {1},
     year = {2007},
     pages = { 1424-1445},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1186755245}
}
Bhatnagar, Nayantara; Caputo, Pietro; Tetali, Prasad; Vigoda, Eric. Analysis of top-swap shuffling for genome rearrangements. Ann. Appl. Probab., Tome 17 (2007) no. 1, pp.  1424-1445. http://gdmltest.u-ga.fr/item/1186755245/