Weak convergence of Metropolis algorithms for non-i.i.d. target distributions
Bédard, Mylène
Ann. Appl. Probab., Tome 17 (2007) no. 1, p. 1222-1244 / Harvested from Project Euclid
In this paper, we shall optimize the efficiency of Metropolis algorithms for multidimensional target distributions with scaling terms possibly depending on the dimension. We propose a method for determining the appropriate form for the scaling of the proposal distribution as a function of the dimension, which leads to the proof of an asymptotic diffusion theorem. We show that when there does not exist any component with a scaling term significantly smaller than the others, the asymptotically optimal acceptance rate is the well-known 0.234.
Publié le : 2007-08-14
Classification:  Metropolis algorithm,  weak convergence,  optimal scaling,  diffusion,  Markov chain Monte Carlo,  60F05,  65C40
@article{1186755238,
     author = {B\'edard, Myl\`ene},
     title = {Weak convergence of Metropolis algorithms for non-i.i.d. target distributions},
     journal = {Ann. Appl. Probab.},
     volume = {17},
     number = {1},
     year = {2007},
     pages = { 1222-1244},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1186755238}
}
Bédard, Mylène. Weak convergence of Metropolis algorithms for non-i.i.d. target distributions. Ann. Appl. Probab., Tome 17 (2007) no. 1, pp.  1222-1244. http://gdmltest.u-ga.fr/item/1186755238/