In our note, we prove the result that the Hilbert's cube equipped with \newline $l_p-$metrics, $p\ge 1$, cannot be isometrically embedded into $c$.
@article{118675, author = {Jozef Bobok}, title = {On isometric embeddings of Hilbert's cube into $c$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {361-364}, zbl = {0855.54040}, mrnumber = {1286583}, language = {en}, url = {http://dml.mathdoc.fr/item/118675} }
Bobok, Jozef. On isometric embeddings of Hilbert's cube into $c$. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 361-364. http://gdmltest.u-ga.fr/item/118675/
Every separable metric space is Lipschitz equivalent to a subset $c_0$, Israel. J. Math. 19 (1974), 284-291. (1974) | MR 0511661
Remarques sur un article de Israel Aharoni sur les prolongements Lipschitziens dans $c_0$, Israel. J. Math. 31 (1978), 97-100. (1978) | MR 0511662 | Zbl 0387.54003
Embeddings into $c_{0}^{+}$, preprint. | MR 1278027