We apply elementary substructures to characterize the space $C_p(X)$ for Corson-compact spaces. As a result, we prove that a compact space $X$ is Corson-compact, if $C_p(X)$ can be represented as a continuous image of a closed subspace of $(L_{\tau })^{\omega }\times Z$, where $Z$ is compact and $L_{\tau }$ denotes the canonical Lindelöf space of cardinality $\tau $ with one non-isolated point. This answers a question of Archangelskij [2].
@article{118673, author = {Ingo Bandlow}, title = {On function spaces of Corson-compact spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {347-356}, zbl = {0835.54016}, mrnumber = {1286581}, language = {en}, url = {http://dml.mathdoc.fr/item/118673} }
Bandlow, Ingo. On function spaces of Corson-compact spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 347-356. http://gdmltest.u-ga.fr/item/118673/
The structure of weakly compact sets in Banach spaces, Ann. Math. Ser. 2 88:1 (1968). (1968) | MR 0228983
Topologicheskie prostranstva funkcij (in Russian), Moscow, 1989.
A construction in set theoretic topology by means of elementary substructures, Zeitschr. f. Math. Logik und Grundlagen d. Math. 37 (1991). (1991) | MR 1270189 | Zbl 0769.54013
A characterization of Corson-compact spaces, Comment. Math. Univ. Carolinae 32 (1991). (1991) | MR 1159800 | Zbl 0769.54025
An introduction to applications of elementary submodels to topology, Topology Proceedings, vol. 13, no. 1, 1988. | MR 1031969 | Zbl 0696.03024
General Topology, Warsaw, 1977. | MR 0500780 | Zbl 0684.54001
Set Theory, Studies in Logic 102, North Holland, 1980. | MR 0597342 | Zbl 0960.03033
Banach spaces and topology, Handbook of set-theoretic topology, North Holland, 1984, 1045-1042. | MR 0776642 | Zbl 0832.46005
On pointwise and weak topology in function spaces, Preprint Nr 4/84, Warsaw, 1984.