Opial's property and James' quasi-reflexive spaces
Kuczumow, Tadeusz ; Reich, Simeon
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994), p. 283-289 / Harvested from Czech Digital Mathematics Library

Two of James' three quasi-reflexive spaces, as well as the James Tree, have the uniform $w^{\ast }$-Opial property.

Publié le : 1994-01-01
Classification:  46B10,  46B20,  46B25,  47H10
@article{118667,
     author = {Tadeusz Kuczumow and Simeon Reich},
     title = {Opial's property and James' quasi-reflexive spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {35},
     year = {1994},
     pages = {283-289},
     zbl = {0818.46019},
     mrnumber = {1286575},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118667}
}
Kuczumow, Tadeusz; Reich, Simeon. Opial's property and James' quasi-reflexive spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 283-289. http://gdmltest.u-ga.fr/item/118667/

Aksoy A.G.; Khamsi M.A. Nonstandard Methods in Fixed Point Theory, Springer-Verlag, New York, 1990. | MR 1066202 | Zbl 0713.47050

Andrew A. Spreading basic sequences and subspaces of James' quasi-reflexive space, Math. Scan. 48 (1981), 109-118. (1981) | MR 0621422 | Zbl 0439.46010

Brodskii M.S.; Milman D.P. On the center of a convex set, Dokl. Akad. Nauk SSSR 59 (1948), 837-840. (1948) | MR 0024073

Goebel K.; Kirk W.A. Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990. | MR 1074005

Goebel K.; Reich S. Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984. | MR 0744194 | Zbl 0537.46001

Goebel K.; Sekowski T.; Stachura A. Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Analysis 4 (1980), 1011-1021. (1980) | MR 0586863 | Zbl 0448.47048

Gǫrnicki J. Some remarks on almost convergence of the Picard iterates for nonexpansive mappings in Banach spaces which satisfy the Opial condition, Comment. Math. 29 (1988), 59-68. (1988) | MR 0988960

Gossez J.P.; Lami Dozo E. Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-573. (1972) | MR 0310717

James R.C. Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527. (1950) | MR 0039915 | Zbl 0039.12202

James R.C. A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. USA 37 (1951), 134-137. (1951) | MR 0044024

James R.C. A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743. (1974) | MR 0417763 | Zbl 0286.46018

James R.C. Banach spaces quasi-reflexive of order one, Studia Math. 60 (1977), 157-177. (1977) | MR 0461099 | Zbl 0356.46017

Karlovitz L.A. On nonexpansive mappings, Proc. Amer. Math. Soc. 55 (1976), 321-325. (1976) | MR 0405182 | Zbl 0328.47033

Khamsi M.A. James' quasi-reflexive space has the fixed point property, Bull. Austral. Math. Soc. 39 (1989), 25-30. (1989) | MR 0976257 | Zbl 0672.47045

Khamsi M.A. Normal structure for Banach spaces with Schauder decomposition, Canad. Math. Bull. 32 (1989), 344-351. (1989) | MR 1010075 | Zbl 0647.46016

Khamsi M.A. On uniform Opial condition and uniform Kadec-Klee property in Banach and metric spaces, preprint. | MR 1380728 | Zbl 0854.47035

Kirk W.A. A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. (1965) | MR 0189009 | Zbl 0141.32402

Kuczumow T. Weak convergence theorems for nonexpansive mappings and semigroups in Banach spaces with Opial's property, Proc. Amer. Math. Soc. 93 (1985), 430-432. (1985) | MR 0773996 | Zbl 0585.47043

Lindenstrauss J.; Stegall C. Examples of separable spaces which do not contain $l_1$ and whose duals are non-separable, Studia Math. 54 (1975), 81-105. (1975) | MR 0390720

Lindenstrauss J.; Tzafriri L. Classical Banach Spaces, Vol. I and II, Springer-Verlag, BerlinHeidelberg-New York, 1977 and 1979. | MR 0415253

Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. (1967) | MR 0211301 | Zbl 0179.19902

Opial Z. Nonexpansive and Monotone Mappings in Banach Spaces, Lecture Notes 61-1, Center for Dynamical Systems, Brown University, Providence, R.I., 1967.

Prus S. Banach spaces with the uniform Opial property, Nonlinear Analysis 18 (1992), 697-704. (1992) | MR 1160113 | Zbl 0786.46023

Tingley D. The normal structure of James' quasi-reflexive space, Bull. Austral. Math. Soc. 42 (1990), 95-100. (1990) | MR 1066363 | Zbl 0724.46014