Two of James' three quasi-reflexive spaces, as well as the James Tree, have the uniform $w^{\ast }$-Opial property.
@article{118667, author = {Tadeusz Kuczumow and Simeon Reich}, title = {Opial's property and James' quasi-reflexive spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {283-289}, zbl = {0818.46019}, mrnumber = {1286575}, language = {en}, url = {http://dml.mathdoc.fr/item/118667} }
Kuczumow, Tadeusz; Reich, Simeon. Opial's property and James' quasi-reflexive spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 283-289. http://gdmltest.u-ga.fr/item/118667/
Nonstandard Methods in Fixed Point Theory, Springer-Verlag, New York, 1990. | MR 1066202 | Zbl 0713.47050
Spreading basic sequences and subspaces of James' quasi-reflexive space, Math. Scan. 48 (1981), 109-118. (1981) | MR 0621422 | Zbl 0439.46010
On the center of a convex set, Dokl. Akad. Nauk SSSR 59 (1948), 837-840. (1948) | MR 0024073
Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990. | MR 1074005
Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984. | MR 0744194 | Zbl 0537.46001
Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Analysis 4 (1980), 1011-1021. (1980) | MR 0586863 | Zbl 0448.47048
Some remarks on almost convergence of the Picard iterates for nonexpansive mappings in Banach spaces which satisfy the Opial condition, Comment. Math. 29 (1988), 59-68. (1988) | MR 0988960
Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-573. (1972) | MR 0310717
Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527. (1950) | MR 0039915 | Zbl 0039.12202
A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. USA 37 (1951), 134-137. (1951) | MR 0044024
A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743. (1974) | MR 0417763 | Zbl 0286.46018
Banach spaces quasi-reflexive of order one, Studia Math. 60 (1977), 157-177. (1977) | MR 0461099 | Zbl 0356.46017
On nonexpansive mappings, Proc. Amer. Math. Soc. 55 (1976), 321-325. (1976) | MR 0405182 | Zbl 0328.47033
James' quasi-reflexive space has the fixed point property, Bull. Austral. Math. Soc. 39 (1989), 25-30. (1989) | MR 0976257 | Zbl 0672.47045
Normal structure for Banach spaces with Schauder decomposition, Canad. Math. Bull. 32 (1989), 344-351. (1989) | MR 1010075 | Zbl 0647.46016
On uniform Opial condition and uniform Kadec-Klee property in Banach and metric spaces, preprint. | MR 1380728 | Zbl 0854.47035
A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. (1965) | MR 0189009 | Zbl 0141.32402
Weak convergence theorems for nonexpansive mappings and semigroups in Banach spaces with Opial's property, Proc. Amer. Math. Soc. 93 (1985), 430-432. (1985) | MR 0773996 | Zbl 0585.47043
Examples of separable spaces which do not contain $l_1$ and whose duals are non-separable, Studia Math. 54 (1975), 81-105. (1975) | MR 0390720
Classical Banach Spaces, Vol. I and II, Springer-Verlag, BerlinHeidelberg-New York, 1977 and 1979. | MR 0415253
Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. (1967) | MR 0211301 | Zbl 0179.19902
Nonexpansive and Monotone Mappings in Banach Spaces, Lecture Notes 61-1, Center for Dynamical Systems, Brown University, Providence, R.I., 1967.
Banach spaces with the uniform Opial property, Nonlinear Analysis 18 (1992), 697-704. (1992) | MR 1160113 | Zbl 0786.46023
The normal structure of James' quasi-reflexive space, Bull. Austral. Math. Soc. 42 (1990), 95-100. (1990) | MR 1066363 | Zbl 0724.46014