Products {$ [S]\cdot [T] $} and {$ [S]\cdot T $}, defined by model delta-nets, are equivalent.
@article{118665, author = {Ji\v r\'\i\ Jel\'\i nek}, title = {A contribution to the equivalence results for the product of distributions}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {263-266}, zbl = {0816.46028}, mrnumber = {1286573}, language = {en}, url = {http://dml.mathdoc.fr/item/118665} }
Jelínek, Jiří. A contribution to the equivalence results for the product of distributions. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 263-266. http://gdmltest.u-ga.fr/item/118665/
Multiplication of distributions, Lecture Notes in Math. 1532 (1993). (1993) | MR 1222643
On the theory of multiplicative products of distributions, J. Sci. Hiroshima Univ. Ser. A-I 30 (1966), 151-181. (1966) | MR 0209835
Convolution, product and Fourier transform of distributions, Stud. Math. 74 (1982), 83-96. (1982) | MR 0675434
Products of distributions, nonstandard methods, Z. Anal. Anw. 7.4 (1988), 347-365. (1988) | MR 0963445 | Zbl 0662.46048
Multiplication of Distributions and Applications to Partial Differential Equations, Institut für Mathematik und Geometrie, Universität Innsbruck, Austria, 1992, p. 312. | MR 1187755 | Zbl 0818.46036
Nukleare lokalkonvexe Räume, Akademie-Verlag Berlin, 1965, p. 266. | MR 0181888 | Zbl 0184.14602
Théorie des distributions, Herman, Paris, 1957. | MR 0209834 | Zbl 0962.46025
On the Colombeau product of distributions, Proceedings Conf. Katowice, June 1988.