We show that group conjugation generates a proper subvariety of left distributive idempotent groupoids. This subvariety coincides with the variety generated by all cancellative left distributive groupoids.
@article{118659, author = {Ale\v s Dr\'apal and Tom\'a\v s Kepka and Michal Mus\'\i lek}, title = {Group conjugation has non-trivial LD-identities}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {219-222}, zbl = {0810.20053}, mrnumber = {1286567}, language = {en}, url = {http://dml.mathdoc.fr/item/118659} }
Drápal, Aleš; Kepka, Tomáš; Musílek, Michal. Group conjugation has non-trivial LD-identities. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 219-222. http://gdmltest.u-ga.fr/item/118659/
Braid groups and left distributive structures, Transactions AMS, to appear.
Notes on left distributive groupoids, Acta Univ. Carolinae - Math. et Ph. 22 (1981), 23-37. (1981) | MR 0654379 | Zbl 0517.20048
The left distributive law and the freeness of an algebra of elementary embeddings, Advances in Mathematics 91 (1992), 209-231. (1992) | MR 1149623 | Zbl 0822.03030
Symmetric groupoids, Osaka J. Math. 15 (1978), 51-76. (1978) | MR 0480780 | Zbl 0395.20033
, Unpublished notes, 1992. | Zbl 1106.76319
, Ph. D. Thesis University of Colorado, 1994. | Zbl 1106.76319