Subdirectly irreducible non-idempotent groupoids satisfying $x\cdot xy=y$ and \linebreak $x\cdot yz=xy\cdot xz$ are studied.
@article{118651, author = {Tom\'a\v s Kepka}, title = {Non-idempotent left symmetric left distributive groupoids}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {181-186}, zbl = {1102.20045}, mrnumber = {1292593}, language = {en}, url = {http://dml.mathdoc.fr/item/118651} }
Kepka, Tomáš. Non-idempotent left symmetric left distributive groupoids. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 181-186. http://gdmltest.u-ga.fr/item/118651/
Free distributive groupoids, Journal of Pure and Appl. Algebra 61 (1989), 123-146. (1989) | MR 1025918 | Zbl 0686.20041
The left distributive law and the freeness of an algebra of elementary embeddings, Advances in Mathematics 91 (1992), 209-231. (1992) | MR 1149623 | Zbl 0822.03030