Non-idempotent left symmetric left distributive groupoids
Kepka, Tomáš
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994), p. 181-186 / Harvested from Czech Digital Mathematics Library

Subdirectly irreducible non-idempotent groupoids satisfying $x\cdot xy=y$ and \linebreak $x\cdot yz=xy\cdot xz$ are studied.

Publié le : 1994-01-01
Classification:  08B20,  20N02
@article{118651,
     author = {Tom\'a\v s Kepka},
     title = {Non-idempotent left symmetric left distributive groupoids},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {35},
     year = {1994},
     pages = {181-186},
     zbl = {1102.20045},
     mrnumber = {1292593},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118651}
}
Kepka, Tomáš. Non-idempotent left symmetric left distributive groupoids. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 181-186. http://gdmltest.u-ga.fr/item/118651/

Dehornoy P. Free distributive groupoids, Journal of Pure and Appl. Algebra 61 (1989), 123-146. (1989) | MR 1025918 | Zbl 0686.20041

Laver R. The left distributive law and the freeness of an algebra of elementary embeddings, Advances in Mathematics 91 (1992), 209-231. (1992) | MR 1149623 | Zbl 0822.03030