We prove the existence of the conditional intensity of a random measure that is absolutely continuous with respect to its mean; when there exists an L$^{p}$-intensity, $p>1$, the conditional intensity is obtained at the same time almost surely and in the mean.
@article{118645, author = {Pierre Jacob and Paulo Eduardo Oliveira}, title = {On the conditional intensity of a random measure}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {103-109}, zbl = {0795.60034}, mrnumber = {1292587}, language = {en}, url = {http://dml.mathdoc.fr/item/118645} }
Jacob, Pierre; Oliveira, Paulo Eduardo. On the conditional intensity of a random measure. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 103-109. http://gdmltest.u-ga.fr/item/118645/
Probability and Measure, Wiley, 1979. | MR 0534323 | Zbl 0822.60002
On conditional intensities of point processes, Z. Wahrsch. Verw. Geb. 41 (1978), 205-220. (1978) | MR 0461654 | Zbl 0349.60056
L$_p$ intensities of random measures, stochastic processes and their applications, Stoch. Proc. and Appl. 9 (1979), 155-161. (1979) | MR 0548835
Random Measures, Academic Press, 1983. | MR 0818219 | Zbl 0694.60030
Martingales and Stochastic Integrals, Cambridge University Press, 1984. | MR 0774050 | Zbl 1152.60043
The conditional intensity of general point processes and an application to line processes, Z. Wahrsch. Verw. Geb. 28 (1974), 207-226. (1974) | MR 0373000 | Zbl 0265.60047
Point processes on spaces of flats and other homogeneous spaces, Math. Proc. Cambridge Phil. Soc. 80 (1976), 297-314. (1976) | MR 0410845 | Zbl 0342.60042
Ph.D. thesis, 1978.