Boundedness and pointwise differentiability of weak solutions to quasi-linear elliptic differential equations and variational inequalities
Ježková, Jana
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994), p. 63-80 / Harvested from Czech Digital Mathematics Library

The local boundedness of weak solutions to variational inequalities (obstacle problem) with the linear growth condition is obtained. Consequently, an analogue of a theorem by Reshetnyak about a.e\. differentiability of weak solutions to elliptic divergence type differential equations is proved for variational inequalities.

Publié le : 1994-01-01
Classification:  35B65,  35D10,  35J60,  35J85,  35R45
@article{118642,
     author = {Jana Je\v zkov\'a},
     title = {Boundedness and pointwise differentiability of weak solutions to quasi-linear elliptic differential equations and variational inequalities},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {35},
     year = {1994},
     pages = {63-80},
     zbl = {0803.35061},
     mrnumber = {1292584},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118642}
}
Ježková, Jana. Boundedness and pointwise differentiability of weak solutions to quasi-linear elliptic differential equations and variational inequalities. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 63-80. http://gdmltest.u-ga.fr/item/118642/

Bojarski B. Pointwise differentiability of weak solutions of elliptic divergence type equations, Bull. Acad. Polon. Sci. 33 (1985), 1-6. (1985) | MR 0798721 | Zbl 0572.35011

Federer H. Geometric Measure Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1969. | MR 0257325 | Zbl 0874.49001

Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, New Jersey, 1983. | MR 0717034 | Zbl 0516.49003

Hajłasz P.; Strzelecki P. A new proof of Reshetnyak's theorem concerning the pointwise differentiability of solution of quasilinear equations, Preprint, Institute of Mathematics, Warsaw University, PKIN IXp., 00-901 Warsaw.

Ladyzhenskaya O.A.; Ural'Tseva N.N. Linear and Quasilinear Elliptic Equations, 2nd ed., Nauka Press, Moscow, 1973, English translation Academic Press, New York, 1968. | MR 0244627 | Zbl 0177.37404

Moser J. A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. XIII (1960), 457-468. (1960) | MR 0170091 | Zbl 0111.09301

Moser J. On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. XIV (1961), 577-591. (1961) | MR 0159138 | Zbl 0111.09302

Reshetnyak Yu.G. Generalized derivatives and differentiability almost everywhere, Mat. Sb. 75 (117) (1968), 323-334 (in Russian) Math. USSR-Sb. 4 (1968), 293-302 (English translation). (1968) | MR 0225159 | Zbl 0176.12001

Reshetnyak Yu.G. O differentsiruemosti pochti vsyudu resheniĭ ellipticheskikh uravneniĭ, Sibirsk. Mat. Zh. XXVIII (1987), 193-195. (1987) | MR 0906049

Serrin J. Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302. (1964) | MR 0170096 | Zbl 0128.09101

Stepanoff M.W. Sur les conditions de l'existence de la différentielle totale, Matematiceskij Sbornik, Rec. Math. Soc. Math. Moscou XXXII (1925), 511-527. (1925)

Ziemer W.P. Weakly Differentiable Functions, Springer-Verlag, Berlin-Heidelberg-New York, 1989. | MR 1014685 | Zbl 0692.46022