The commutative neutrix convolution product of the functions $x^r e_-^{\lambda x}$ and $x^s e_+ ^{\mu x}$ is evaluated for $r,s =0,1,2, \ldots$ and all $\lambda, \mu$. Further commutative neutrix convolution products are then deduced.
@article{118640, author = {Brian Fisher and Adem Kili\c cman}, title = {Commutative neutrix convolution products of functions}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {47-53}, zbl = {1009.46018}, mrnumber = {1292582}, language = {en}, url = {http://dml.mathdoc.fr/item/118640} }
Fisher, Brian; Kiliçman, Adem. Commutative neutrix convolution products of functions. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 47-53. http://gdmltest.u-ga.fr/item/118640/
Introduction to the neutrix calculus, J. Analyse Math. 7 (1959-60), 291-398. (1959-60) | MR 0124678 | Zbl 0097.10503
Neutrices and the convolution of distributions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 17 (1987), 119-135. (1987) | MR 0939303
Non-commutative neutrix convolution products of functions, Math. Balkanica, to appear. | MR 1379246 | Zbl 0907.46033
A commutative neutrix convolution product of distributions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., to appear. | MR 1319771 | Zbl 0821.46050
A result on the commutative neutrix convolution product of distributions, Doğa, Turkish J. Math. 16 (1992), 33-45. (1992) | MR 1156362
Results on the commutative neutrix convolution product of distributions, Arch. Math. 29 (1993), 105-117. (1993) | MR 1242633
Generalized Functions, Vol. I, Academic Press, 1964. | MR 0166596 | Zbl 0159.18301