In this paper we investigate weakly continuous solutions of some integral equations in Banach spaces. Moreover, we prove a fixed point theorem which is very useful in our considerations.
@article{118638, author = {Dariusz Bugajewski}, title = {On the existence of weak solutions of integral equations in Banach spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {35}, year = {1994}, pages = {35-41}, zbl = {0816.45012}, mrnumber = {1292580}, language = {en}, url = {http://dml.mathdoc.fr/item/118638} }
Bugajewski, Dariusz. On the existence of weak solutions of integral equations in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 35-41. http://gdmltest.u-ga.fr/item/118638/
Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. (1967) | MR 0222426
On the existence of weak solutions of differential equations in nonreflexive Banach spaces, Nonlinear Analysis 2 (1978), 169-177. (1978) | MR 0512280 | Zbl 0379.34041
Some fixed point theorems, Comment. Math. Univ. Carolinae 9 (1968), 223-235. (1968) | MR 0235435
On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262. (1977) | MR 0482402 | Zbl 0365.46015
Ordinary differential equations in Banach spaces, Lecture Notes Math., Berlin-Heidelberg-New York, 1977. | MR 0463601 | Zbl 0418.34060
Topology, vol. II, New York-London-Warszawa, 1968. | MR 0259835 | Zbl 0849.01044
On the equation $x'=f(t,x)$ in locally convex spaces, Math. Nachr. 118 (1984), 179-185. (1984) | MR 0773619 | Zbl 0569.34052
On the application of measure of noncompactness to existence theorems, Rend. Sem. Mat. Univ. Padova 75 (1986), 1-14. (1986) | MR 0847653 | Zbl 0589.45007