Copies of $l^1$ and $c_o$ in Musielak-Orlicz sequence spaces
Alherk, Ghassan ; Hudzik, Henryk
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994), p. 9-19 / Harvested from Czech Digital Mathematics Library

Criteria in order that a Musielak-Orlicz sequence space $l^\Phi$ contains an isomorphic as well as an isomorphically isometric copy of $l^1$ are given. Moreover, it is proved that if $\Phi = (\Phi_i)$, where $\Phi_i$ are defined on a Banach space, $X$ does not satisfy the $\delta^o_2$-condition, then the Musielak-Orlicz sequence space $l^\Phi (X)$ of $X$-valued sequences contains an almost isometric copy of $c_o$. In the case of $X = I\!\!R$ it is proved also that if $l^\Phi$ contains an isomorphic copy of $c_o$, then $\Phi$ does not satisfy the $\delta^o_2$-condition. These results extend some results of [A] and [H2] to Musielak-Orlicz sequence spaces.

Publié le : 1994-01-01
Classification:  46B20,  46B25,  46B45,  46E30
@article{118636,
     author = {Ghassan Alherk and Henryk Hudzik},
     title = {Copies of $l^1$ and $c\_o$ in Musielak-Orlicz sequence spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {35},
     year = {1994},
     pages = {9-19},
     zbl = {0820.46013},
     mrnumber = {1292578},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118636}
}
Alherk, Ghassan; Hudzik, Henryk. Copies of $l^1$ and $c_o$ in Musielak-Orlicz sequence spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) pp. 9-19. http://gdmltest.u-ga.fr/item/118636/

Alherk G. On the non-$l_n^{(1)}$ and locally uniformly non-$l_n^{(1)}$ properties and $l^1$ copies in Musielak-Orlicz space, Comment. Math. Univ. Carolinae 31 (1990), 435-443. (1990) | MR 1078478

Aliprantis C.D.; Burkinshaw O. Positive operators, Pure and Applied Math., Academic Press, Inc., 1985. | MR 0809372 | Zbl 1098.47001

Bessaga C.; Pełczyński A. On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. (1958) | MR 0115069

Denker M.; Hudzik H. Uniformly non-$l^{(1)}_n$ Musielak-Orlicz sequence spaces, Proc. Indian Acad. Sci. 101 (1991), 71-86. (1991) | MR 1125480

Hudzik H. On some equivalent conditions in Musielak-Orlicz spaces, Comment. Math. (Prace Matem.) 24 (1984), 57-64. (1984) | MR 0759055 | Zbl 0564.46022

Hudzik H. Orlicz spaces containing a copy of $l^1$, Math. Japonica 34 (1989), 747-759. (1989) | MR 1022152

Hudzik H.; Ye Y. Support functionals and smoothness in Musielak-Orlicz sequence spaces endowed with the Luxemburg norm, Comment. Math. Univ. Carolinae 31 (1990), 661-684. (1990) | MR 1091364 | Zbl 0721.46012

Kamińska A. Flat Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci. Math. 30 (1982), 347-352. (1982) | MR 0707748

Kantorovich L.V.; Akilov G.P. Functional Analysis (in Russian), Nauka, Moscow, 1977. | MR 0511615

Krasnoselskii M.A.; Rutickii Ya.B. Convex functions and Orlicz spaces, Groningen, 1961 (translation).

Luxemburg W.A.J. Banach function spaces, Thesis, Delft, 1955. | MR 0072440 | Zbl 0162.44701

Musielak J. Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, SpringerVerlag, 1983. | MR 0724434 | Zbl 0557.46020

Rao M.M.; Ren Z.D. Theory of Orlicz spaces, Pure and Applied Mathematics, Marcel Dekker, 1991. | MR 1113700 | Zbl 0724.46032

Turett B. Fenchel-Orlicz spaces, Dissertationes Math. 181 (1980), 1-60. (1980) | MR 0578390 | Zbl 0435.46025