A note on linear mappings between function spaces
Baars, Jan
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993), p. 711-715 / Harvested from Czech Digital Mathematics Library

Arhangel'ski\v{\i} proved that if $X$ and $Y$ are completely regular spaces such that ${C_p (X)}$ and ${C_p (Y)}$ are linearly homeomorphic, then $X$ is pseudocompact if and only if $Y$ is pseudocompact. In addition he proved the same result for compactness, $\sigma $-compactness and realcompactness. In this paper we prove that if $\phi : {C_p (X)} \rightarrow {C_p (X)}$ is a continuous linear surjection, then $Y$ is pseudocompact provided $X$ is and if $\phi $ is a continuous linear injection, then $X$ is pseudocompact provided $Y$ is. We also give examples that both statements do not hold for compactness, $\sigma $-compactness and realcompactness.

Publié le : 1993-01-01
Classification:  54C35,  57N17
@article{118628,
     author = {Jan Baars},
     title = {A note on linear mappings between function spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {34},
     year = {1993},
     pages = {711-715},
     zbl = {0787.54017},
     mrnumber = {1263800},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118628}
}
Baars, Jan. A note on linear mappings between function spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 711-715. http://gdmltest.u-ga.fr/item/118628/

Arhangel'Skiĭ A.V. On linear homeomorphisms of function spaces, Soviet Math. Dokl. 25 (1982), 852-855. (1982)

Baars J.; De Groot J. On Topological and Linear Equivalence of Certain Function Spaces, CWI-tract 86, Centre for Mathematics and Computer Science, Amsterdam. | MR 1182148 | Zbl 0755.54007

Baars J.; De Groot J.; Pelant J. Function spaces of completely metrizable spaces, to appear in Trans. of the AMS. | MR 1182148 | Zbl 0841.54012