Sacks forcing collapses $\frak c$ to $\frak b$
Simon, Petr
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993), p. 707-710 / Harvested from Czech Digital Mathematics Library

We shall prove that Sacks algebra is nowhere $(\frak b, \frak c, \frak c)$-distributive, which implies that Sacks forcing collapses $\frak c$ to $\frak b$.

Publié le : 1993-01-01
Classification:  03C25,  03E25,  03E40,  03G05,  06A07,  06E05
@article{118627,
     author = {Petr Simon},
     title = {Sacks forcing collapses $\frak c$ to $\frak b$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {34},
     year = {1993},
     pages = {707-710},
     zbl = {0797.03053},
     mrnumber = {1263799},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118627}
}
Simon, Petr. Sacks forcing collapses $\frak c$ to $\frak b$. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 707-710. http://gdmltest.u-ga.fr/item/118627/

Abraham U. A minimal model for $\lnot$CH: iteration of Jensen's reals, Trans. Amer. Math. Soc. (1984), 281 657-674. (1984) | MR 0722767

Balcar B.; Simon P. Disjoint Refinement, in: Handbook of Boolean Algebra, Elsevier Sci. Publ. (1989), 333-386. (1989) | MR 0991597

Judah H.; Miller A.W.; Shelah S. Sacks forcing, Laver forcing and Martin's axiom, Arch. Math. Logic (1992), 31 145-161. (1992) | MR 1147737 | Zbl 0755.03026

Rosłanowski A.; Shelah S. More forcing notions imply diamond, (preprint January 4, 1993).

Sacks G.E. Forcing with perfect closed sets, Axiomatic set theory, Proc. Symp. Pure Math. 13 (1971), 331-355. (1971) | MR 0276079 | Zbl 0226.02047