We shall prove that Sacks algebra is nowhere $(\frak b, \frak c, \frak c)$-distributive, which implies that Sacks forcing collapses $\frak c$ to $\frak b$.
@article{118627, author = {Petr Simon}, title = {Sacks forcing collapses $\frak c$ to $\frak b$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {707-710}, zbl = {0797.03053}, mrnumber = {1263799}, language = {en}, url = {http://dml.mathdoc.fr/item/118627} }
Simon, Petr. Sacks forcing collapses $\frak c$ to $\frak b$. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 707-710. http://gdmltest.u-ga.fr/item/118627/
A minimal model for $\lnot$CH: iteration of Jensen's reals, Trans. Amer. Math. Soc. (1984), 281 657-674. (1984) | MR 0722767
Disjoint Refinement, in: Handbook of Boolean Algebra, Elsevier Sci. Publ. (1989), 333-386. (1989) | MR 0991597
Sacks forcing, Laver forcing and Martin's axiom, Arch. Math. Logic (1992), 31 145-161. (1992) | MR 1147737 | Zbl 0755.03026
More forcing notions imply diamond, (preprint January 4, 1993).
Forcing with perfect closed sets, Axiomatic set theory, Proc. Symp. Pure Math. 13 (1971), 331-355. (1971) | MR 0276079 | Zbl 0226.02047