On the properties of the solution set of nonconvex evolution inclusions of the subdifferential type
Papageorgiou, Nikolaos S.
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993), p. 673-687 / Harvested from Czech Digital Mathematics Library

In this paper we consider nonconvex evolution inclusions driven by time dependent convex subdifferentials. First we establish the existence of a continuous selection for the solution multifunction and then we use that selection to show that the solution set is path connected. Two examples are also presented.

Publié le : 1993-01-01
Classification:  34A60,  34G20,  35K55
@article{118624,
     author = {Nikolaos S. Papageorgiou},
     title = {On the properties of the solution set of nonconvex evolution inclusions of the subdifferential type},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {34},
     year = {1993},
     pages = {673-687},
     zbl = {0792.34014},
     mrnumber = {1263796},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118624}
}
Papageorgiou, Nikolaos S. On the properties of the solution set of nonconvex evolution inclusions of the subdifferential type. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 673-687. http://gdmltest.u-ga.fr/item/118624/

Ahmed N.U. Existence of optimal controls for a class of systems governed by differential inclusions on a Banach space, J. Optim. Theory Appl. 50 (1986), 213-237. (1986) | MR 0857234 | Zbl 0577.49025

Aubin J.-P.; Cellina A. Differential Inclusions, Springer, Berlin, 1984. | MR 0755330 | Zbl 0538.34007

Barbu V. Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, The Netherlands, 1976. | MR 0390843 | Zbl 0328.47035

Brezis H. Operateurs Maximaux Monotones, North Holland, Amsterdam, 1973. | Zbl 0252.47055

Cellina A.; Ornelas A. Representation of the attainable set for Lipschitzian differential inclusions, Rocky Mountain J. Math. 22 (1992), 117-124. (1992) | MR 1159946 | Zbl 0752.34012

Chang K.C. The obstacle problem and partial differential equations with discontinuous nonlinearities, Comm. Pure and Appl. Math. 33 (1980), 117-146. (1980) | MR 0562547 | Zbl 0405.35074

Colombo R.; Fryszkowski A.; Rzezuchowski T.; Staicu V. Continuous selection of solution sets of Lipschitzian differential inclusions, Funkcialaj Ekvacioj, to appear. | MR 1130468

Deblasi F.; Pianigiani G. On the solution sets of nonconvex differential inclusions, Centro V. Volterra, Università di Roma II, Preprint No. 73, September 1991.

Deimling K.; Rao M.R.M. On solution sets of multivalued differential equations, Applicable Analysis 28 (1988), 129-135. (1988) | MR 0967566 | Zbl 0635.34014

Diestel J.; Uhl J. Vector Measures, Math. Surveys, Vol. 15, AMS, Providence, Rhode Island, 1977. | MR 0453964 | Zbl 0521.46035

Dugundji J. Topology, Allyn and Bacon Inc., Boston, 1966. | MR 0193606 | Zbl 0397.54003

Henry C. Differential equations with discontinuous right-hand side for planning procedures, J. Economic Theory 4 (1972), 545-551. (1972) | MR 0449534

Himmelberg C.; Van Vleck F. A note on solution sets of differential inclusions, Rocky Mountain J. Math. 12 (1982), 621-625. (1982) | MR 0683856

Hu S.; Papageorgiou N.S. On the topological regularity of the solution set of differential inclusions with constraints, J. Differential Equations, to appear. | MR 1264523 | Zbl 0796.34017

Kenmochi N. Some nonlinear parabolic inequalities, Israel J. Math 22 (1975), 304-331. (1975) | MR 0399662

Moreau J.-J. Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations 26 (1977), 347-374. (1977) | MR 0508661

Papageorgiou N.S. On evolution inclusions associated with time dependent convex subdifferentials, Comment. Math. Univ. Carolinae 31 (1990), 517-527. (1990) | MR 1078486 | Zbl 0711.34076

Papageorgiou N.S. Optimal control of nonlinear evolution inclusions, J. Optim. Theory 67 (1990), 321-354. (1990) | MR 1080139 | Zbl 0697.49007

Papageorgiou N.S. On the solution set of differential inclusions in Banach spaces, Applicable Analysis 25 (1987), 319-329. (1987) | MR 0912190

Papageorgiou N.S. Extremal solutions of evolution inclusions associated with time dependent convex subdifferentials, Math. Nachrichten 158 (1992), 219-232. (1992) | MR 1235307 | Zbl 0776.34014

Papageorgiou N.S. A property of the solution set of nonlinear evolution inclusions with state constraints, Mathematica Japonica 38 (1993), 559-569. (1993) | MR 1221027 | Zbl 0777.34043

Papageorgiou N.S. On the set of solutions of a class of nonlinear evolution inclusions, Kôdai Math. Jour. 15 (1992), 387-402. (1992) | MR 1189966 | Zbl 0774.34011

Papageorgiou N.S. Differential inclusions with state constraints, Proc. of the Edinburgh Math. Soc. 32 (1988), 81-97. (1988) | MR 0981995

Pugh C.C. Funnel sections, J. Differential Equations 19 (1975), 270-295. (1975) | MR 0393678 | Zbl 0327.34007

Staicu V. Continuous selections of solution sets to evolution inclusions, SISSA, Reprint No. 42M, Trieste, Italy, March 1990.

Staicu V.; Wu H. Arcwise connectedness of solution sets to Lipschitzian differential inclusions, SISSA, Reprint No. 71M, Trieste, Italy, June 1990. | MR 1120387

Tolstonogov A. On the structure of the solution set for differential inclusions in a Banach space, Math. USSR Sbornik 46 (1983), 1-15. (1983) | Zbl 0564.34065

Wagner D. Survey of measurable selection theorems, SIAM J. Control and Optim. 15 (1977), 859-903. (1977) | MR 0486391 | Zbl 0407.28006

Watanabe J. On certain nonlinear evolution equations, J. Math. Soc. Japan 25 (1973), 446-463. (1973) | MR 0326522 | Zbl 0253.35053

Yamada Y. On evolution equations generated by subdifferential operators, J. Fac. Sci. Univ. Tokyo 23 (1976), 491-515. (1976) | MR 0425701 | Zbl 0343.34053

Yotsutani S. Evolution equations associated with the subdifferentials, J. Math. Soc. Japan 31 (1978), 623-646. (1978) | MR 0544681 | Zbl 0405.35043