Equivalence and zero sets of certain maps in infinite dimensions
Fečkan, Michal
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993), p. 645-655 / Harvested from Czech Digital Mathematics Library

Equivalence and zero sets of certain maps on infinite dimensional spaces are studied using an approach similar to the deformation lemma from the singularity theory.

Publié le : 1993-01-01
Classification:  58B99,  58C25,  58C27,  58E05,  58F14,  58K99
@article{118622,
     author = {Michal Fe\v ckan},
     title = {Equivalence and zero sets of certain maps in infinite dimensions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {34},
     year = {1993},
     pages = {645-655},
     zbl = {0807.58005},
     mrnumber = {1263794},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118622}
}
Fečkan, Michal. Equivalence and zero sets of certain maps in infinite dimensions. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 645-655. http://gdmltest.u-ga.fr/item/118622/

Golubitsky M.; Marsden J. The Morse lemma in infinite dimensions via singularity theory, SIAM J. Math. Anal. 14 (1983), 1037-1044. (1983) | MR 0718809 | Zbl 0525.58013

Buchner M.; Marsden J.E.; Schecter S. Applications of the blowing-up construction and algebraic theory to bifurcation problems, J. Diff. Eq. 48 (1983), 404-433. (1983) | MR 0702428

Mawhin J.; Willem M. Critical Point Theory and Hamiltonian Systems, in Appl. Math. Sci., Vol. 74 (1989). (1989) | MR 0982267 | Zbl 0676.58017

Abraham R.; Marsden J.E.; Ratiu T. Manifolds, Tensor Analysis, and Applications, in Appl. Math. Sci., Vol. 75 (1988). (1988) | MR 0960687 | Zbl 0875.58002

Kuiper N.H. $C^1$-equivalence of functions near isolated critical points, in Symposium Infinite Dimensional Topology, Baton Rouge (1967). (1967)

Kuo T-C. On $C^0$-sufficienty of jets of potential functions, Topology 8 (1969), 167-171. (1969) | MR 0238338