Equivalence and zero sets of certain maps on infinite dimensional spaces are studied using an approach similar to the deformation lemma from the singularity theory.
@article{118622, author = {Michal Fe\v ckan}, title = {Equivalence and zero sets of certain maps in infinite dimensions}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {645-655}, zbl = {0807.58005}, mrnumber = {1263794}, language = {en}, url = {http://dml.mathdoc.fr/item/118622} }
Fečkan, Michal. Equivalence and zero sets of certain maps in infinite dimensions. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 645-655. http://gdmltest.u-ga.fr/item/118622/
The Morse lemma in infinite dimensions via singularity theory, SIAM J. Math. Anal. 14 (1983), 1037-1044. (1983) | MR 0718809 | Zbl 0525.58013
Applications of the blowing-up construction and algebraic theory to bifurcation problems, J. Diff. Eq. 48 (1983), 404-433. (1983) | MR 0702428
Critical Point Theory and Hamiltonian Systems, in Appl. Math. Sci., Vol. 74 (1989). (1989) | MR 0982267 | Zbl 0676.58017
Manifolds, Tensor Analysis, and Applications, in Appl. Math. Sci., Vol. 75 (1988). (1988) | MR 0960687 | Zbl 0875.58002
$C^1$-equivalence of functions near isolated critical points, in Symposium Infinite Dimensional Topology, Baton Rouge (1967). (1967)
On $C^0$-sufficienty of jets of potential functions, Topology 8 (1969), 167-171. (1969) | MR 0238338