A necessary and sufficient condition is given for the direct sum of two $\Cal B^{(1)}$-groups to be (quasi-isomorphic to) a $\Cal B^{(1)}$-group. A $\Cal B^{(1)}$-group is a torsionfree Abelian group that can be realized as the quotient of a finite direct sum of rank 1 groups modulo a pure subgroup of rank 1.
@article{118616, author = {Claudia Metelli}, title = {On direct sums of $\Cal B^{(1)}$-groups}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {587-591}, zbl = {0787.20031}, mrnumber = {1243091}, language = {en}, url = {http://dml.mathdoc.fr/item/118616} }
Metelli, Claudia. On direct sums of $\Cal B^{(1)}$-groups. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 587-591. http://gdmltest.u-ga.fr/item/118616/
On a class of Butler groups, Manuscripta Math 71 (1991), 1-28. (1991) | MR 1094735 | Zbl 0765.20026
On direct summands of Butler $\Cal B^{(1)}$-groups, to appear in Comm. in Algebra. | MR 1215549
Infinite Abelian Groups, Vol. II, Academic Press, London-New York, 1973. | MR 0349869 | Zbl 0338.20063
Zero-one matrices with an application to Abelian groups, to appear in Rend. Sem. Mat. Univ. Padova. | MR 1257128 | Zbl 0809.20046
Quasi-isomorphism and $\Bbb Z (2)$ representations for a class of Butler groups, preprint. | MR 1876211
Butler groups and lattices of types, Comment. Math. Univ. Carolinae 31 (1990), 613-619. (1990) | MR 1091358 | Zbl 0717.20039
Quasi-summands of a certain class of Butler groups, to appear in Proceedings of the 1991 Curacao Conference. | MR 1217267 | Zbl 0806.20043