Compactifications of biframes are defined, and characterized internally by means of strong inclusions. The existing description of the compact, zero-dimensional coreflection of a biframe is used to characterize {\sl all\/} zero-dimensional compactifications, and a criterion identifying them by their strong inclusions is given. In contrast to the above, two sufficient conditions and several examples show that the existence of smallest biframe compactifications differs significantly from the corresponding frame question.
@article{118613, author = {Anneliese Schauerte}, title = {Biframe compactifications}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {567-574}, zbl = {0787.06012}, mrnumber = {1243088}, language = {en}, url = {http://dml.mathdoc.fr/item/118613} }
Schauerte, Anneliese. Biframe compactifications. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 567-574. http://gdmltest.u-ga.fr/item/118613/
Compact regular frames and the Sikorski theorem, Kyungpook Math. J. 28 (1988), 1-14. (1988) | MR 0986848 | Zbl 0676.03029
Universal zero-dimensional compactifications, Categorical Topology and its Relations to Modern Analysis, Algebra and Combinatorics (Prague, 1988), 257-269, World Sci. Publishing, Teaneck, NJ, 1989. | MR 1047906
Compactification of frames, Math. Nachr. 149 (1990), 105-116. (1990) | MR 1124796 | Zbl 0722.54018
Biframe compactifications, manuscript, 1989.
Stably continuous frames, Math. Proc. Cambr. Phil. Soc. 104 (1988), 7-19. (1988) | MR 0938448
Biframes and bispaces, Quaestiones Math. 6 (1983), 13-25. (1983) | MR 0700237
General Topology, Addison Wesley Publishing Company, Reading, Massachussetts, 1966. | Zbl 1107.54001
Stone Spaces, Cambridge Univ. Press, Cambridge, 1982. | MR 0698074 | Zbl 0586.54001
Biframes, Ph.D. Thesis, McMaster University, 1992.