Let $X$ be a uniform space of uniform weight $\mu$. It is shown that if every open covering, of power at most $\mu$, is uniform, then $X$ is fine. Furthermore, an $\omega _\mu $-metric space is fine, provided that every finite open covering is uniform.
@article{118611, author = {Umberto Marconi}, title = {Some conditions under which a uniform space is fine}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {543-547}, zbl = {0845.54017}, mrnumber = {1243086}, language = {en}, url = {http://dml.mathdoc.fr/item/118611} }
Marconi, Umberto. Some conditions under which a uniform space is fine. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 543-547. http://gdmltest.u-ga.fr/item/118611/
$\;ømega_\mu$-additive topological spaces, Rend. Sem. Mat. Univ. Padova 67 (1982), 131-141. (1982) | MR 0682706
Uniform continuity of continuous functions of metric spaces, Pacific J. Math. 8 (1958), 11-16. (1958) | MR 0099023 | Zbl 0082.16207
Uniform continuity in sequentially uniform spaces, Acta Mathematica Hungarica 61 3-4 (1993 \toappear). (1993 \toappear) | MR 1200953 | Zbl 0819.54014
General Topology, Polish Scientific Publishers Warsaw (1977). (1977) | MR 0500780 | Zbl 0373.54002
Uniform Spaces, Mathematical Surveys nr 12 AMS Providence, Rhode Island (1964). (1964) | MR 0170323 | Zbl 0124.15601
On uniform continuity of $C(X)$ (Japanese), Sugaku Kenkiu Roku of Tokyo Kyoiku Daigaku 2 (1955), 36-45. (1955)
On the uniform paracompactness, Rend. Sem. Mat. Univ. Padova 72 (1984), 101-105. (1984) | MR 0778348 | Zbl 0566.54013
On uniform paracompactness of the $\;ømega_\mu$-metric spaces, Rend. Accad. Naz. Lincei 75 (1983), 102-105. (1983) | MR 0780810
Paracompactness and product spaces, Fund. Math. 50 (1962), 223-236. (1962) | MR 0132525 | Zbl 0099.17401
Spaces whose finest uniformity is metric, Pacific J. Math. 9 (1959), 567-570. (1959) | MR 0106448 | Zbl 0088.38301