Let $\{X_n,\, n\geq 1\}$ be a sequence of independent random variables such that $EX_n=a_n$, $E(X_n-a_n)^2=\sigma _n^2$, $n\geq 1$. Let $\{N_n,\, n\geq 1\}$ be a sequence od positive integer-valued random variables. Let us put $S_{N_n}=\sum_{k=1}^{N_n} X_k$, $L_n=\sum_{k=1}^{n} a_k$, $s_n^2=\sum_{k=1}^{n} \sigma _k^2$, $n\geq 1$. In this paper we present necessary and sufficient conditions for weak convergence of the sequence $\{(S_{N_n}-L_n)/s_n,\, n\geq 1\}$, as $n\rightarrow \infty $. The obtained theorems extend the main result of M. Finkelstein and H.G. Tucker (1989).
@article{118604, author = {Andrzej Krajka and Zdzis\l aw Rychlik}, title = {Necessary and sufficient conditions for weak convergence of random sums of independent random variables}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {465-482}, zbl = {0785.60016}, mrnumber = {1243079}, language = {en}, url = {http://dml.mathdoc.fr/item/118604} }
Krajka, Andrzej; Rychlik, Zdzisław. Necessary and sufficient conditions for weak convergence of random sums of independent random variables. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 465-482. http://gdmltest.u-ga.fr/item/118604/
Normal approximation and Asymptotic Expansions, John Wiley & Sons, New York-London-Sydney-Toronto, 1976. | MR 0436272 | Zbl 0657.41001
Remarks on the foundations of measures of dependence, New Perspectives in Theoretical and Applied Statistics, ed. by Dr. Madan L. Puri, Dr. Jose Perez Vilaplana and Dr. Wolfgang Wertz, John Wiley & Sons Inc., 1987, pp. 421-437. | MR 0900202 | Zbl 0619.60011
A necessary and sufficient condition for convergence in law of random sums of random variables under nonrandom centering, Proc. Amer. Math. Soc. 107 (1989), 1061-1070. (1989) | MR 0993749 | Zbl 0682.60017
On the limit behaviour of randomly indexed sums of independent random variables, Liet. Matem. Rink. 28 (1988), 484-494. (1988) | MR 0969463 | Zbl 0659.60040
On the rate of convergence in the random central limit theorem in Hilbert space, Probab. and Math. Stat. 11 (1990), 97-108. (1990) | MR 1096941 | Zbl 0741.60006
O skhodimosti raspredelenii summ sluchainogo chisla nezavisimykch sluchainykh velichin k normal'nomu raspredeleniyu, Vestnik Mosk. Univ. 5 (1976), 5-12. (1976) | MR 0426104
Predel'nye teoremy dlja summ nezavisimykh sluchainykh velichin, Moskva, Nauka, 1987. | MR 0896036
A remainder term estimate in a random-sum central limit theorem, Bull. of the Pol. Acad. of Sci., Math. XXV (1985), 57-63. (1985) | MR 0798728 | Zbl 0564.60024
On the sums of a random number of random variables, Liet. Matem. Rink. 11 (1971), 181-187. (1971) | MR 0303582 | Zbl 0229.60035