Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues
Kowalski, Oldřich
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993), p. 451-457 / Harvested from Czech Digital Mathematics Library

We extend a construction by K. Yamato [Ya] to obtain new explicit examples of Riemannian 3-manifolds as in the title. Some of these examples have an interesting geometrical interpretation.

Publié le : 1993-01-01
Classification:  53C20,  53C21,  53C25,  53C30,  53C40
@article{118602,
     author = {Old\v rich Kowalski},
     title = {Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {34},
     year = {1993},
     pages = {451-457},
     zbl = {0789.53024},
     mrnumber = {1243077},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118602}
}
Kowalski, Oldřich. Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 451-457. http://gdmltest.u-ga.fr/item/118602/

Boeckx E.; Kowalski O.; Vanhecke L. Nonhomogeneous relatives of symmetric spaces, to appear in Differential Geometry and its Applications. | MR 1264908

Kowalski O. A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\varrho _1=\varrho _2\neq \varrho _3$, to appear in Nagoya Math. J. | MR 1253692

Kobayashi S.; Nomizu K. Foundations of Differential Geometry I, Interscience Publishers, New York, 1983. | Zbl 0119.37502

Kowalski O.; Tricerri F.; Vanhecke L. New examples of non-homogeneous Riemannian manifolds whose curvature tensor is that of a Riemannian symmetric space, C.R. Acad. Sci. Paris, Sér. I, 311 (1990), 355-360. (1990) | MR 1071643 | Zbl 0713.53028

Kowalski O.; Tricerri F.; Vanhecke L. Curvature homogeneous Riemannian manifolds, J. Math. Pures Appl. 71 (1992), 471-501. (1992) | MR 1193605 | Zbl 0836.53029

Kowalski O.; Tricerri F.; Vanhecke L. Curvature homogeneous spaces with a solvable Lie group as homogeneous model, J. Math. Soc. Japan 44 (1992), 461-484. (1992) | MR 1167378 | Zbl 0762.53031

Milnor J. Curvatures of left invariant Lie groups, Adv. in Math. 21 (1976), 293-329. (1976) | MR 0425012

Sekigawa K. On some 3-dimensional Riemannian manifolds, Hokkaido Math. J. 2 (1973), 259-270. (1973) | MR 0353204 | Zbl 0266.53034

Sekigawa K. On some 3-dimensional curvature homogeneous spaces, Tensor, N.S. 31 (1977), 87-97. (1977) | MR 0464115 | Zbl 0356.53016

Singer I.M. Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. (1960) | MR 0131248 | Zbl 0171.42503

Tsukada T. Curvature homogeneous hypersurfaces immersed in a real space form, Tôhoku Math. J. 40 (1988), 221-244. (1988) | MR 0943821 | Zbl 0651.53037

Yamato K. A characterization of locally homogeneous Riemannian manifolds of dimension 3, Nagoya Math. J. 123 (1991), 77-90. (1991) | MR 1126183