The notion of closedness in topological categories
Baran, Mehmet
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993), p. 383-395 / Harvested from Czech Digital Mathematics Library

In [1], various generalizations of the separation properties, the notion of closed and strongly closed points and subobjects of an object in an arbitrary topological category are given. In this paper, the relationship between various generalized separation properties as well as relationship between our separation properties and the known ones ([4], [5], [7], [9], [10], [14], [16]) are determined. Furthermore, the relationships between the notion of closedness and strongly closedness are investigated in an arbitrary topological category and a characterization of each of these notions is given for some known topological categories.

Publié le : 1993-01-01
Classification:  18B99,  18D15,  54A05,  54A20,  54B30,  54D10
@article{118592,
     author = {Mehmet Baran},
     title = {The notion of closedness in topological categories},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {34},
     year = {1993},
     pages = {383-395},
     zbl = {0780.18003},
     mrnumber = {1241748},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118592}
}
Baran, Mehmet. The notion of closedness in topological categories. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 383-395. http://gdmltest.u-ga.fr/item/118592/

Baran M. Separation properties, Indian J. Pure Appl. Math. 23 (1992), 13-21. (1992) | MR 1166899 | Zbl 0876.54009

Baran M. Stacks and filters, Turkish J. of Math.-Doğa 16 (1992), 94-107. (1992) | MR 1180841 | Zbl 0841.54004

Baran M.; Mielke M.V. Generalized Separation Properties in Topological Categories, in preparation.

Brümmer G.C.L. A Categorical Study of Initiality in Uniform Topology, Thesis, University of Cape Town, 1971.

Harvey J.M. $T_0$-separation in topological categories, Quastiones Math. 2 (1977), 177-190. (1977) | MR 0486050 | Zbl 0384.18002

Herrlich H. Topological functors, Gen. Top. Appl. 4 (1974), 125-142. (1974) | MR 0343226 | Zbl 0288.54003

Hoffmann R.-E. $(E,M)$-Universally Topological Functors, Habilitationsschrift, Universität Düsseldorf, 1974.

Hosseini N. The Geometric Realization Functors and Preservation of Finite Limits, Dissertation, University of Miami, 1986.

Hušek M.; Pumplün D. Disconnectedness, Quaestiones Math. 13 (1990), 449-459. (1990) | MR 1084754

Marny Th. Rechts-Bikategoriestrukturen in topologischen Kategorien, Dissertation, Freie Universität Berlin, 1973.

Mielke M.V. Convenient categories for internal singular algebraic topology, Illinois Journal of Math., vol. 27, no. 3, 1983. | MR 0698313 | Zbl 0496.55006

Mielke M.V. Geometric topological completions with universal final lifts, Top. and Appl. 9 (1985), 277-293. (1985) | MR 0794490 | Zbl 0581.18004

Munkres J.R. Topology: A First Course, Prentice Hall Inc., New Jersey, 1975. | MR 0464128 | Zbl 0306.54001

Nel L.D. Initially structured categories and cartesian closedness, Can. Journal of Math. XXVII (1975), 1361-1377. (1975) | MR 0393183 | Zbl 0294.18002

Schwarz F. Connections Between Convergence and Nearness, Lecture Notes in Math. 719, Springer-Verlag, 1978, pp. 345-354. | MR 0544658 | Zbl 0409.54002

Weck-Schwarz S. $T_0$-objects and separated objects in topological categories, Quastiones Math. 14 (1991), 315-325. (1991) | MR 1123910