In the paper, some kind of independence between upper metric dimension and natural order of converging sequences is shown --- for any sequence converging to zero there is a greater sequence with an arbitrary ($\leqslant 1$) upper dimension. On the other hand there is a relationship to summability of series --- the set of elements of any positive summable series must have metric dimension less than or equal to $1/2$.
@article{118590, author = {Ladislav, Jr. Mi\v s\'\i k and Tibor \v Z\'a\v cik}, title = {On the metric dimension of converging sequences}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {367-373}, zbl = {0845.54026}, mrnumber = {1241746}, language = {en}, url = {http://dml.mathdoc.fr/item/118590} }
Mišík, Ladislav, Jr.; Žáčik, Tibor. On the metric dimension of converging sequences. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 367-373. http://gdmltest.u-ga.fr/item/118590/
$\varepsilon$-entropy and $\varepsilon$-capacity of sets in functional spaces (in Russian), Usp. Mat. Nauk 14 (1959), 3-86 Am. Math. Soc. Transl. 17 (1961), 277-364. (1961) | MR 0112032
On some properties of the metric dimension, Comment. Math. Univ. Carolinae 31 (1990), 781-791. (1990) | MR 1091376
Sur une propriété metrique de la dimension, Annals of Math. 33 (1932), 156-162 Appendix to the Russian translation of ``Dimension Theory'' by W. Hurewitcz and H. Wallman, Izdat. Inostr. Lit. Moscow, 1948. (1932) | MR 1503042
On the relationship between Hausdorff dimension and metric dimension, Pacific J. Math. 23 (1967), 183-187. (1967) | MR 0217776 | Zbl 0153.24701
The geometry of critical and near-critical values of differentiable mappings, Math. Ann. 264 (1983), 495-515. (1983) | MR 0716263 | Zbl 0507.57019
On some approximation properties of the metric dimension, Math. Slovaca 42 (1992), 331-338. (1992) | MR 1182963