For each connected complex reductive group G, we find a family of new examples of complex quasi-Hamiltonian G-spaces with G-valued moment maps. These spaces arise naturally as moduli spaces of (suitably framed) meromorphic connections on principal G-bundles over a disk, and they generalise the conjugacy class example of Alekseev, Malkin, and Meinrenken [3] (which appears in the simple pole case). Using the “fusion product” in the theory, this gives a finite-dimensional construction of the natural symplectic structures on the spaces of monodromy/Stokes data of meromorphic connections over arbitrary genus Riemann surfaces, together with a new proof of the symplectic nature of isomonodromic deformations of such connections