In this paper we characterize local dendrites which are the images of themselves under local homeomorphisms of degree $n$ for each positive integer $n$.
@article{118589, author = {Stanis\l aw Miklos}, title = {The existence of local homeomorphisms of degree $n>1$ on local dendrites}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {363-366}, zbl = {0809.54028}, mrnumber = {1241745}, language = {en}, url = {http://dml.mathdoc.fr/item/118589} }
Miklos, Stanisław. The existence of local homeomorphisms of degree $n>1$ on local dendrites. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 363-366. http://gdmltest.u-ga.fr/item/118589/
Local homeomorphisms onto tree-like continua, Colloq. Math. 38 (1977), 63-68. (1977) | MR 0464200
Exactly $(n,1)$ mappings onto generalized local dendrites, Topology Appl. 31 (1989), 47-53. (1989) | MR 0984103 | Zbl 0667.54013
Local homeomorphisms onto nonunicoherent continua, Period. Math. Hungar. 20 (1989), 305-306. (1989) | MR 1042718 | Zbl 0649.54019
Local expansions, derivatives, and fixed points, Fund. Math. 91 (1976), 1-4. (1976) | MR 0410719 | Zbl 0326.54031