The existence of local homeomorphisms of degree $n>1$ on local dendrites
Miklos, Stanisław
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993), p. 363-366 / Harvested from Czech Digital Mathematics Library

In this paper we characterize local dendrites which are the images of themselves under local homeomorphisms of degree $n$ for each positive integer $n$.

Publié le : 1993-01-01
Classification:  54C10,  54F15,  54F20,  54F50
@article{118589,
     author = {Stanis\l aw Miklos},
     title = {The existence of local homeomorphisms of degree $n>1$ on local dendrites},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {34},
     year = {1993},
     pages = {363-366},
     zbl = {0809.54028},
     mrnumber = {1241745},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118589}
}
Miklos, Stanisław. The existence of local homeomorphisms of degree $n>1$ on local dendrites. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 363-366. http://gdmltest.u-ga.fr/item/118589/

Maćkowiak T. Local homeomorphisms onto tree-like continua, Colloq. Math. 38 (1977), 63-68. (1977) | MR 0464200

Miklos S. Exactly $(n,1)$ mappings onto generalized local dendrites, Topology Appl. 31 (1989), 47-53. (1989) | MR 0984103 | Zbl 0667.54013

Miklos S. Local homeomorphisms onto nonunicoherent continua, Period. Math. Hungar. 20 (1989), 305-306. (1989) | MR 1042718 | Zbl 0649.54019

Rosenholtz I. Local expansions, derivatives, and fixed points, Fund. Math. 91 (1976), 1-4. (1976) | MR 0410719 | Zbl 0326.54031