Normal spaces are characterized in terms of an insertion type theorem, which implies the Katětov-Tong theorem. The proof actually provides a simple necessary and sufficient condition for the insertion of an ordered pair of lower and upper semicontinuous functions between two comparable real-valued functions. As a consequence of the latter, we obtain a characterization of completely normal spaces by real-valued functions.
@article{118588, author = {Tomasz Kubiak}, title = {A strengthening of the Kat\v etov-Tong insertion theorem}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {357-362}, zbl = {0807.54023}, mrnumber = {1241744}, language = {en}, url = {http://dml.mathdoc.fr/item/118588} }
Kubiak, Tomasz. A strengthening of the Katětov-Tong insertion theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 357-362. http://gdmltest.u-ga.fr/item/118588/
Introduction to Dimension Theory (in Russian), Nauka, Moscow, 1973. | MR 0365524
Reelle Funktionen, Springer-Verlag, Berlin, 1954. | MR 0061652 | Zbl 0181.05801
Extension of Lebesgue sets and real-valued functions, Czechoslovak Math. J. 31 (1981), 63-74. (1981) | MR 0604112
Insertion, approximation, and extension of real-valued functions, Proc. Amer. Math. Soc. 93 (1985), 169-175. (1985) | MR 0766550 | Zbl 0558.54012
Interposition and lattice cones of functions, Trans. Amer. Math. Soc. 222 (1976), 65-96. (1976) | MR 0438094 | Zbl 0352.46011
General Topology, P.W.N., Warszawa, 1977. | MR 0500780 | Zbl 0684.54001
Topology and Normed Spaces, Chapman and Hall, London, 1974. | MR 0463890 | Zbl 0285.46002
On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91 Correction 40 (1953), 203-205. (1953) | MR 0050264
Insertion of a measurable function, J. Austral. Math. Soc., to appear. | MR 1297004
$L$-fuzzy normal spaces and Tietze extension theorem, J. Math. Anal. Appl. 125 (1987), 141-153. (1987) | MR 0891354 | Zbl 0643.54008
Completely normal spaces and insertion of semicontinuous functions, to appear.
Insertion of a continuous function, Topology Proc. 4 (1979), 463-478. (1979) | MR 0598287 | Zbl 0386.54006
Continuous selections I, Annals of Math. 63 (1956), 361-382. (1956) | MR 0077107 | Zbl 0071.15902
In-between theorems in uniform spaces, Trans. Amer. Math. Soc. 261 (1980), 483-501. (1980) | MR 0580899
Separation theorems for semicontinuous functions on normally ordered topological spaces, J. London Math. Soc. (2) 3 (1971), 371-377. (1971) | MR 0278268
Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht, 1992, p. 348. | MR 1154566
Rational extension of $C(X)$ and semicontinuous functions, Dissert. Math. 270 (1988), 1-27. (1988) | MR 0932847
Some characterizations of normal and perfectly normal spaces, Duke Math. J. 19 (1952), 289-292. (1952) | MR 0050265 | Zbl 0046.16203