On $p$-sequential $p$-compact spaces
García-Ferreira, Salvador ; Tamariz-Mascarúa, Angel
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993), p. 347-356 / Harvested from Czech Digital Mathematics Library

It is shown that a space $X$ is $L({}^{\mu }p)$-Weakly Fréchet-Urysohn for $p\in \omega ^{\ast }$ iff it is $L({}^{\nu }p)$-Weakly Fréchet-Urysohn for arbitrary $\mu ,\nu <\omega _1$, where ${}^{\mu }p$ is the $\mu $-th left power of $p$ and $L(q)=\{{}^{\mu }q:\mu <\omega _1\}$ for $q\in \omega ^{\ast }$. We also prove that for $p$-compact spaces, $p$-sequentiality and the property of being a $L({}^{\nu }p)$-Weakly Fréchet-Urysohn space with $\nu <\omega _1$, are equivalent; consequently if $X$ is $p$-compact and $\nu <\omega _1$, then $X$ is $p$-sequential iff $X$ is ${}^{\nu }p$-sequential (Boldjiev and Malyhin gave, for each $P$-point $p\in \omega ^{\ast }$, an example of a compact space $X_p$ which is $^2p$-Fréchet-Urysohn and it is not $p$-Fréchet-Urysohn. The question whether such an example exists in ZFC remains unsolved).

Publié le : 1993-01-01
Classification:  03E05,  04A20,  54A25,  54D55
@article{118587,
     author = {Salvador Garc\'\i a-Ferreira and Angel Tamariz-Mascar\'ua},
     title = {On $p$-sequential $p$-compact spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {34},
     year = {1993},
     pages = {347-356},
     zbl = {0791.54034},
     mrnumber = {1241743},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118587}
}
García-Ferreira, Salvador; Tamariz-Mascarúa, Angel. On $p$-sequential $p$-compact spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 347-356. http://gdmltest.u-ga.fr/item/118587/

Bernstein A.R. A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193. (1970) | MR 0251697 | Zbl 0198.55401

Blass A.R. Kleene degrees of ultrafilters, in: Recursion Theory Weak (OberWolfach, 1984), 29-48, Lecture Notes in Math. 1141, Springer, Berlin-New York, 1985. | MR 0820773 | Zbl 0573.03020

Booth D.D. Ultrafilters on a countable set, Ann. Math. Logic 2 (1970), 1-24. (1970) | MR 0277371 | Zbl 0231.02067

Boldjiev B.; Malyhin V. The sequentiality is equivalent to the $\Cal F$-Fréchet-Urysohn property, Comment. Math. Univ. Carolinae 31 (1990), 23-25. (1990) | MR 1056166

Comfort W.W.; Negrepontis S. The Theory of Ultrafilters, Grundlehren der Mathematichen Wissenschaften, vol. 211, Springer-Verlag, 1974. | MR 0396267 | Zbl 0298.02004

Frolík Z. Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91. (1967) | MR 0203676

Garcia-Ferreira S. On ${FU}(p)$-spaces and $p$-sequential spaces, Comment. Math. Univ. Carolinae 32 (1991), 161-171. (1991) | MR 1118299 | Zbl 0789.54032

Garcia-Ferreira S. Three orderings on $\beta (ømega)\setminus ømega $, Top. Appl., to appear. | MR 1227550 | Zbl 0791.54032

Katětov M. Products of filters, Comment. Math. Univ. Carolinae 9 (1968), 173-189. (1968) | MR 0250257

Kočinac L.D. A generalization of chain net spaces, Publ. Inst. Math. (Beograd) 44 (58) (1988), 109-114. (1988) | MR 0995414

Kombarov A.P. On a theorem of A.H. Stone, Soviet Math. Dokl. 27 (1983), 544-547. (1983) | Zbl 0531.54007

Malyhin V.I. On countable space having no bicompactification of countable tightness, Soviet Math. Dokl. 13 (1972), 1407-1411. (1972) | MR 0320981

Vopěnka P. The construction of models of set-theory by the method of ultraproducts, Z. Math. Logik Grundlagen Math. 8 (1962), 293-306. (1962) | MR 0146085