Contact manifolds, harmonic curvature tensor and $(k,\mu )$-nullity distribution
Papantoniou, Basil J.
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993), p. 323-334 / Harvested from Czech Digital Mathematics Library

In this paper we give first a classification of contact Riemannian manifolds with harmonic curvature tensor under the condition that the characteristic vector field $\xi $ belongs to the $(k,\mu )$-nullity distribution. Next it is shown that the dimension of the $(k,\mu )$-nullity distribution is equal to one and therefore is spanned by the characteristic vector field $\xi $.

Publié le : 1993-01-01
Classification:  53C05,  53C15,  53C20,  53C21,  53C25
@article{118584,
     author = {Basil J. Papantoniou},
     title = {Contact manifolds, harmonic curvature tensor and $(k,\mu )$-nullity distribution},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {34},
     year = {1993},
     pages = {323-334},
     zbl = {0782.53024},
     mrnumber = {1241740},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118584}
}
Papantoniou, Basil J. Contact manifolds, harmonic curvature tensor and $(k,\mu )$-nullity distribution. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 323-334. http://gdmltest.u-ga.fr/item/118584/

Baikoussis C.; Koufogiorgos T. On a type of contact manifolds, to appear in Journal of Geometry. | MR 1205692

Blair D.E. Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics 509, Springer-Verlag, Berlin, 1979. | MR 0467588 | Zbl 0319.53026

Blair D.E. Two remarks on contact metric structures, Tôhoku Math. J. 29 (1977), 319-324. (1977) | MR 0464108 | Zbl 0376.53021

Blair D.E.; Koufogiorgos T.; Papantoniou B.J. Contact metric manifolds with characteristic vector field satisfying $R(X,Y)\xi =k(\eta (Y)X-\eta (X)Y)+\mu (\eta (Y)hX-\eta (X)hY)$, submitted.

Deng S.R. Variational problems on contact manifolds, Thesis, Michigan State University, 1991.

Koufogiorgos T. Contact metric manifolds, to appear in Annals of Global Analysis and Geometry. | MR 1201408

Tanno S. Ricci curvatures of contact Riemannian manifolds, Tôhoku Math J. 40 (1988), 441-448. (1988) | MR 0957055 | Zbl 0655.53035