Global in time solvability of the initial boundary value problem for some nonlinear dissipative evolution equations
Shibata, Yoshihiro
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993), p. 295-312 / Harvested from Czech Digital Mathematics Library

The global in time solvability of the one-dimensional nonlinear equations of thermoelasticity, equations of viscoelasticity and nonlinear wave equations in several space dimensions with some boundary dissipation is discussed. The blow up of the solutions which might be possible even for small data is excluded by allowing for a certain dissipative mechanism.

Publié le : 1993-01-01
Classification:  35L20,  35L70,  73B30,  73F15,  73F99,  74D99
@article{118582,
     author = {Yoshihiro Shibata},
     title = {Global in time solvability of the initial boundary value problem  for some nonlinear dissipative evolution equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {34},
     year = {1993},
     pages = {295-312},
     zbl = {0805.35077},
     mrnumber = {1241738},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118582}
}
Shibata, Yoshihiro. Global in time solvability of the initial boundary value problem  for some nonlinear dissipative evolution equations. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 295-312. http://gdmltest.u-ga.fr/item/118582/

Agmon S. On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Commun. Pure Appl. Math. 15 (1962), 119-147. (1962) | MR 0147774 | Zbl 0109.32701

Agmon S.; Douglis A.; Nirenberg L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Commun. Pure Appl. Math. 12 (1959), 623-727; II, ibid. 17 (1964), 35-92. (1959) | MR 0125307 | Zbl 0093.10401

Andrews G. On the existence of solutions to the equation: $u_{tt} = u_{xxt} + \sigma(u_x)_x$, J. Diff. Eqns. 35 (1980), 200-231. (1980) | MR 0561978 | Zbl 0415.35018

Andrews G.; Ball J.M. Asymptotic behaviour and changes in phase in one-dimensional nonlinear viscoelasticity, J. Diff. Eqns. 44 (1982), 306-341. (1982) | MR 0657784

Ang D.D.; Dinh A.P.N. On the strongly damped wave equation: $u_{tt} - \Delta u - \Delta u_t + f(u) = 0$, SIAM J. Math. Anal. 19 (1988), 1409-1418. (1988) | MR 0965260

Aviles P.; Sandefur J. Nonlinear second order equations with applications to partial differential equations, J. Diff. Eqns. 58 (1985), 404-427. (1985) | MR 0797319 | Zbl 0572.34004

Bardos C.; Lebeau G.; Rauch J Contrôle et stabilisation dans les problèmes hyperboliques, Appendix II in J.L. Lions Contrôlabilité exacte, perturbations et stabilisation de systémes distribués, I, Contrôlabilité exacte Masson, RMA 8, 1988. | MR 0953547

Bardos C.; Lebeau G.; Rauch J Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, submitted to SIAM. J. Cont. Optim. | Zbl 0786.93009

Chen G. Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. pures et appl. 58 (1976), 249-273. (1976) | MR 0544253

Chrzȩszczyk A. Some existence results in dynamical thermoelasticity. Part I. Nonlinear Case, Arch. Mech. 39 (1987), 605-617. (1987) | MR 0976929

Cleménts J. Existence theorems for a quasilinear evolution equation, SIAM J. Appl. Math. 26 (1974), 745-752. (1974) | MR 0372426

Cleménts J. On the existence and uniqueness of solutions of the equation $u_{tt} - (\partial/\partial x_i)\sigma_i(u_{x_i}) - \Delta_Nu_t = f$, Canad. Math. Bull. 18 (1975), 181-187. (1975) | MR 0397200

Dafermos C.M. On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal. 29 (1968), 241-271. (1968) | MR 0233539 | Zbl 0183.37701

Dafermos C.M. The mixed initial-boundary value problem for the equations of non-linear one-dimensional visco-elasticity, J. Diff. Eqns. 6 (l969), 71-86. (l969) | MR 0241831

Dafermos C.M.; Hsiao L. Development of singularities in solutions of the equations of nonlinear thermoelasticity, Quart. Appl. Math. 44 (1986), 463-474. (1986) | MR 0860899 | Zbl 0661.35009

Dan W. On a local in time solvability of the Neumann problem of quasilinear hyperbolic parabolic coupled systems, preprint, 1992. | MR 1357364 | Zbl 0841.35003

Dassios G.; Grillakis M. Dissipation rates and partition of energy in thermoelasticity, Arch. Rational Mech. Anal. 87 (1984), 49-91. (1984) | MR 0760319 | Zbl 0563.73007

Ebihara Y. On some nonlinear evolution equations with the strong dissipation, J. Diff. Eqns. 30 (1978), 149-164 II ibid. 34 (1979), 339-352 III ibid. 45 (1982), 332-355. (1982) | MR 0513267

Ebihara Y. Some evolution equations with the quasi-linear strong dissipation, J. Math. pures et appl. 58 (1987), 229-245. (1987) | MR 0539221

Engler H. Strong solutions for strongly damped quasilinear wave equations, Contemporary Math. 64 (1987), 219-237. (1987) | MR 0881465 | Zbl 0638.35054

Feireisl E. Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem, Comment. Math. Univ. Carolinae 31 (1990), 243-255. (1990) | MR 1077895 | Zbl 0718.73013

Friedman A.; Nečas J. Systems of nonlinear wave equations with nonlinear viscosity, Pacific J. Math. 135 (1988), 29-55. (1988) | MR 0965683

Greenberg J.M. On the existence, uniqueness, and stability of the equation $\rho_0X_{tt} = E(X_x)X_{xx} + X_{xxt}$, J. Math. Anal. Appl. 25 (1969), 575-591. (1969) | MR 0240473

Greenberg J.M.; Li Ta-Tsien The effect of boundary damping for the quasilinear wave equation, J. Diff. Eqns. 52 (1984), 66-75. (1984) | MR 0737964

Greenberg J.M.; Maccamy R.C.; Mizel J.J. On the existence, uniqueness, and stability of the equation $\sigma^{\prime} (u_x)u_{xx} - \lambda u_{xxt} = \rho_0u_{tt}$, J. Math. Mech. 17 (1968), 707-728. (1968)

Godin P. Private communication in 1992, .

Hrusa W.J.; Messaoudi S.A. On formation of singularities in one-dimensional nonlinear thermoelasticity, Arch. Rational Mech. Anal. 111 (1990), 135-151. (1990) | MR 1057652 | Zbl 0712.73023

Hrusa W.J.; Tarabek M.A. On smooth solutions of the Cauchy problem in one-dimensional nonlinear thermoelasticity, Quart. Appl. Math. 47 (1989), 631-644. (1989) | MR 1031681 | Zbl 0692.73005

Jiang S. Global existence of smooth solutions in one- dimensional nonlinear thermoelasticity, Proc. Roy. Soc. Edinburgh 115A (1990), 257-274. (1990) | MR 1069521 | Zbl 0723.35044

Jiang S. Far field behavior of solutions to the equations of nonlinear 1-d-thermoelasticity, Appl. Anal. 36 (1990), 25-35. (1990) | MR 1040876 | Zbl 0672.35011

Jiang S. Rapidly decreasing behaviour of solutions in nonlinear 3-D-thermo-elasticity, Bull. Austral. Math. Soc. 43 (1991), 89-99. (1991) | MR 1086721

Jiang S. Global solutions of the Dirichlet problem in one-dimensional nonlinear thermoelasticity, SFB 256 Preprint 138, Universität Bonn, 1990.

Jiang S. Global solutions of the Neumann problem in one-dimensional nonlinear thermoelasticity, to appear in Nonlinear TMA. | MR 1174462 | Zbl 0786.73009

Jiang S.; Racke R. On some quasilinear hyperbolic-parabolic initial boundary value problems, Math. Meth. Appl. Sci. 12 (1990), 315-339. (1990) | MR 1048561 | Zbl 0706.35098

Kawashima S. Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Thesis, Kyoto University, 1983.

Kawashima S.; Okada M. Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A. 53 (1982), 384-387. (1982) | MR 0694940 | Zbl 0522.76098

Kawashima S.; Shibata Y. Global existence and exponential stability of small solutions to nonlinear viscoelasticity, to appear in Commun. Math. Phys. | MR 1178142 | Zbl 0779.35066

Kawashima S.; Shibata Y. On the Neumann problem of one-dimensional nonlinear thermoelasticity with time- independent external forces, preprint, 1992. | MR 1314530

Klainerman S.; Majda A. Formation of singularities for wave equations including the nonlinear vibrating string, Pure Appl. Math. 33 (1980), 241-263. (1980) | MR 0562736 | Zbl 0443.35040

Kobayashi T.; Pecher H.; Shibata Y. On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity, preprint, 1992. | MR 1219900 | Zbl 0788.35001

Lagnese J. Boundary stabilization of linear elastodynamic systems, SIAM J. Control Optim. 21 (1983), 968-984. (1983) | MR 0719524 | Zbl 0531.93044

Maccamy R.C.; Mizel V.J. Existence and nonexistence in the large of solutions of quasilinear wave equations, Arch. Rational Mech. Anal. 25 (1967), 299-320. (1967) | MR 0216165 | Zbl 0146.33801

Matsumura A. Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with first order dissipation, Publ. RIMS Kyoto Univ. Ser. A 13 (1977), 349-379. (1977) | MR 0470507

Mizohata K.; Ukai S. The global existence of small amplitude solutions to the nonlinear acoustic wave equation, preprint, 1991, Dep. of Information Sci. Tokyo Inst. of Tech. | MR 1231754 | Zbl 0794.35108

Nagasawa T. On the one-dimensional motion of the polytropic ideal gas non-fixed on the boundary, J. Diff. Eqns. 65 (1986), 49-67. (1986) | MR 0859472 | Zbl 0598.34021

Pecher H. On global regular solutions of third order partial differential equations, J. Math. Anal. Appl. 73 (1980), 278-299. (1980) | MR 0560948 | Zbl 0429.35057

Ponce G. Global existence of small solutions to a class of nonlinear evolution equation, Nonlinear Anal. TMA 9 (1985), 399-418. (1985) | MR 0785713

Ponce G.; Racke R. Global existence of small solutions to the initial value problem for nonlinear thermoelasticity, J. Diff. Eqns. 87 (1990), 70-83. (1990) | MR 1070028 | Zbl 0725.35065

Potier-Ferry M. On the mathematical foundation of elastic stability, I, Arch. Rational Mech. Anal. 78 (1982), 55-72. (1982) | MR 0654552

Qin T. The global smooth solutions of second order quasilinear hyperbolic equations with dissipation boundary condition, Chinese Anals Math. 9B (1988), 251-269. (1988) | MR 0968461

Quinn J.P.; Russell D.L. Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping, Proc. Roy. Soc. Edinburgh 77A (1977), 97-127. (1977) | MR 0473539 | Zbl 0357.35006

Rabinowitz P. Periodic solutions of nonlinear partial differential equations, Commun. Pure Appl. Math. 20 (1967), 145-205 II ibid. 22 (1969), 15-39. (1969) | MR 0206507

Racke R. On the Cauchy problem in nonlinear 3-d-thermoelasticity, Math. Z. 203 (1990), 649-682. (1990) | MR 1044071 | Zbl 0701.73002

Racke R. Blow-up in nonlinear three-dimensional thermoelasticity, Math. Meth. Appl. Sci. 12 (1990), 267-273. (1990) | MR 1043758 | Zbl 0705.35081

Racke R. Mathematical aspects in nonlinear thermoelasticity, SFB 256 Lecture Note Series { 25}, 1992.

Racke R. Lectures on nonlinear evolution equation. Initial value problems, Ser. ``Aspects of Mathematics'', Fridr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1992. | MR 1158463

Racke R.; Shibata Y. Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity, Arch. Rational Mech. Anal. 116 (1991), 1-34. (1991) | MR 1130241 | Zbl 0756.73012

Racke R.; Shibata Y.; Zheng S. Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity, to appear in Quart. Appl. Math. | MR 1247439 | Zbl 0804.35132

Rybka P. Dynamical modelling of phase transitions by means of viscoelasticity in many dimensions, to appear in Proc. Roy. Soc. Edinburgh 121A (1992). | MR 1169897 | Zbl 0758.73004

Shibata Y. Neumann problem for one-dimensional nonlinear thermoelasticity, to appear in Banach Center Publication. | MR 1205848

Shibata Y; Nakamura G. On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order, Math. Z. 202 (1989), 1-64. (1989) | MR 1007739

Shibata Y.; Kikuchi M. On the mixed problem for some quasilinear hyperbolic system with fully nonlinear boundary condition, J. Diff. Eqns. 80 (1989), 154-197. (1989) | MR 1003254 | Zbl 0689.35055

Shibata Y.; Zheng S. On some nonlinear hyperbolic systems with damping boundary conditions, Nonlinear Anal. TMA 17 (1991), 233-266. (1991) | MR 1120976 | Zbl 0772.35031

Slemrod M. Global existence, uniqueness, and asymptotic stability of classical smooth solutions in the one-dimensional non-linear thermoelasticity, Arch. Rational Mech. Anal. 76 (1981), 97-133. (1981) | MR 0629700

Tanabe H. Equations of evolution, Monographs and Studies in Mathematics, Pitman, London, San Francisco, Melbourne, l979. | Zbl 0417.35003

Webb G.F. Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Canada J. Math. 32 (1980), 631-643. (1980) | MR 0586981 | Zbl 0414.35046

Yamada Y. Some remarks on the equation $u_{tt} - \sigma(y_x)y_{xx} -y_{xtx} = f$, Osaka J. Math. 17 (1980), 303-323. (1980) | MR 0587752

Zheng S. Global solutions and applications to a class of quasilinear hyperbolic-parabolic coupled systems, Sci. Sinica Ser. A 27 (1984), 1274-1286. (1984) | MR 0794293 | Zbl 0581.35056

Zheng S.; Shen W. Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems, Sci. Sinica Ser. A 3 (1987), 1133-1149. (1987) | MR 0942420 | Zbl 0649.35013

Zuazua E. Stability and decay for a class of nonlinear hyperbolic problems, Asymptotic Anal. 1 (1988), 161-185. (1988) | MR 0950012 | Zbl 0677.35069