On the exterior steady problem for the equations of a viscous isothermal gas
Padula, Mariarosaria
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993), p. 275-293 / Harvested from Czech Digital Mathematics Library

We prove existence and a representation formula for solutions to the equations describing steady flows of an isothermal, viscous, compressible gas having a positive infimum for the density $\varrho $, moving in an exterior domain, when the speed of the obstacle and the external forces are sufficiently small.

Publié le : 1993-01-01
Classification:  35Q35,  76N10,  76N15
@article{118581,
     author = {Mariarosaria Padula},
     title = {On the exterior steady problem for the equations of a viscous isothermal gas},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {34},
     year = {1993},
     pages = {275-293},
     zbl = {0778.76087},
     mrnumber = {1241737},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118581}
}
Padula, Mariarosaria. On the exterior steady problem for the equations of a viscous isothermal gas. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 275-293. http://gdmltest.u-ga.fr/item/118581/

Beirâo Da Veiga H. Boundary value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow, Rend. Sem. Mat. Univ. Padova 79 247-273. | MR 0964034

Finn R. On the exterior stationary problem for the Navier-Stokes equations and associated perturbation problems, Arch. Ratl. Mech. Anal. 19 363-406. | MR 0182816 | Zbl 0149.44606

Friedrichs K.O. Symmetric positive linear differential equations, Comm. Pur. Appl. Math. 11 333-418. | MR 0100718 | Zbl 0083.31802

Fujita Yashima H. Sur l'équation de Navier-Stokes compressible stationaire, VII Congresso do Grupo ne Matematicos de Expressâo Latina, Actas vol. II, Coimbra.

Galdi G.P. On the Oseen boundary-value problem in exterior domains, Proc. of ``The Navier-Stokes Equations Theory and Numerical Methods'', J.G. Heywood, K. Masuda, R. Rautmann, V.A. Solonnikov eds., Oberwolfach. | Zbl 0783.35047

Galdi G.P. On the energy equation and on the uniqueness for $D$-solutions to steady Navier-Stokes equations in exterior domains, Mathematical Problems related to the Navier- Stokes Equation, Galdi G.P. ed., Adv. in Math. for Appl. Sci., 34-78. | MR 1190729 | Zbl 0791.35099

Galdi G.P. On the asymptotic structure of $D$-solutions to steady Navier-Stokes equations in exterior domains, Mathematical Problems related to the Navier-Stokes Equation, Galdi G.P. ed., Adv. in Math. for Appl. Sci. | MR 1190730 | Zbl 0794.35111

Galdi G.P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vol. I Linearized Stationary Problems, Springer Tracts in Natural Philosophy. | MR 1284205 | Zbl 0949.35005

Matsumura A. Fundamental solution of the linearized system for the exterior stationary problem of compressible viscous flow, Pattern and Waves, Studies in Math. and its Appl. 18 481-505. | MR 0882390 | Zbl 0637.76064

Matsumura A.; Nishida T. Exterior stationary problems of motion of compressible viscous and heat-conductive fluids, Proc. EQUADIFF, Dafermos & Ladas & Papanicolau eds., M. Dekker Inc., 473-479. | MR 1021749

Novotný A.; Padula M. (Forthcoming) $L^p$-approach to steady flows of viscous compressible fluids in exterior domains, .

Padula M. Stability properties of heat-conducting compressible regular flows, J. Math. Kyoto Univ. 32 178-222. | MR 1173972

Padula M. A representation formula for steady solutions of a compressible fluid moving at low speed, Transport Theory and Statistical Physics 21 (1992), 593-614. (1992) | MR 1194463

Padula M.; Pileckas C. (Forthcoming) Steady flows of a viscous ideal gas in domains with noncompact boundaries: I. Existence and asymptotic behavior in a pipe, .

Simader C.G. The weak Dirichlet and Neumann problem for the laplacian in $L^q$ for bounded and exterior domains, Applications, Nonlinear Analysis, Function Spaces and Applications 4, M. Krbec, A. Kufner, B. Opic, J. Rákosník eds., 180-250. | MR 1151436