We show that if Y is the Hausdorffization of the primitive spectrum of a $C^{\ast }$-algebra $A$ then $A$ is $\ast $-isomorphic to the $C^{\ast }$-algebra of sections vanishing at infinity of the canonical $C^{\ast }$-bundle over $Y$.
@article{118578, author = {Janusz Migda}, title = {Non-commutative Gelfand-Naimark theorem}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {253-255}, zbl = {0809.46057}, mrnumber = {1241734}, language = {en}, url = {http://dml.mathdoc.fr/item/118578} }
Migda, Janusz. Non-commutative Gelfand-Naimark theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 253-255. http://gdmltest.u-ga.fr/item/118578/
Representation of rings by sections, Mem. Amer. Math. Soc. 83 (1968). (1968) | MR 0247487 | Zbl 0174.05703
Les $C^{\ast }$-algèbres et leurs representations, Gauthier-Villars, Paris, 1969. | MR 0246136 | Zbl 0288.46055
Banach bundles, Banach modules and automorphisms of $C^{\ast }$- algebras, Research Notes in Math. 92, Pitman Advanced Publishing Program, Boston- London-Melbourne, 1983. | MR 0721812 | Zbl 0536.46048
The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280. (1961) | MR 0164248 | Zbl 0101.09301
An extension of Macley's method to Banach $\ast $-algebraic bundles, Mem. Amer. Math. Soc. 90 (1969). (1969) | MR 0259619
Topological representations of $C^{\ast }$-algebras, Tohôku Math. J. 14 (1962), 187-204. (1962) | MR 0143053