Let $G = G(\cdot)$ be a commutative groupoid such that $\{(a,b,c) \in G^3$; $a\cdot bc \ne ab\cdot c\} = \{(a,b,c) \in G^3$; $a=b\ne c$ or $ a \ne b =c \}$. Then $G$ is determined uniquely up to isomorphism and if it is finite, then $\operatorname{card}(G) = 2^i$ for an integer $i\ge 0$.
@article{118571, author = {Ale\v s Dr\'apal}, title = {On a class of commutative groupoids determined by their associativity triples}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {199-201}, zbl = {0787.20040}, mrnumber = {1241727}, language = {en}, url = {http://dml.mathdoc.fr/item/118571} }
Drápal, Aleš. On a class of commutative groupoids determined by their associativity triples. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 199-201. http://gdmltest.u-ga.fr/item/118571/
Sets of associative triples, Europ. J. Combinatorics 6 (1985), 227-231. (1985) | MR 0818596
Groupoids with non-associative triples on the diagonal, Czech. Math. Journal 35 (1985), 555-564. (1985) | MR 0809042