A uniform boundedness principle of Pták
Swartz, Charles W.
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993), p. 149-151 / Harvested from Czech Digital Mathematics Library

The Antosik-Mikusinski Matrix Theorem is used to give an extension of a uniform boundedness principle due to V. Pták to certain metric linear spaces. An application to bilinear operators is given.

Publié le : 1993-01-01
Classification:  46A16,  46A32,  46A99,  47A99
@article{118564,
     author = {Charles W. Swartz},
     title = {A uniform boundedness principle of Pt\'ak},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {34},
     year = {1993},
     pages = {149-151},
     zbl = {0799.46008},
     mrnumber = {1240212},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118564}
}
Swartz, Charles W. A uniform boundedness principle of Pták. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 149-151. http://gdmltest.u-ga.fr/item/118564/

Antosik P.; Swartz C. Matrix Methods in Analysis, Springer-Verlag, Heidelberg, 1985. | MR 0781343 | Zbl 0564.46001

Klis C. An example of noncomplete normed $K$-spaces, Bull. Acad. Polon. Sci. 26 (1978), 415-420. (1978) | MR 0500088

Lorentz G.; Macphail M. Unbounded operators and a theorem of A. Robinson, Trans. Royal Soc. Canada 46 (1952), 33-37. (1952) | MR 0052533 | Zbl 0048.35205

Maddox I. Infinite Matrices of Operators, Springer-Verlag, Heidelberg, 1980. | MR 0568707 | Zbl 0424.40002

Neumann M.; Pták V. Automatic continuity, local type and casuality, Studia Math. 82 (1985), 61-90. (1985) | MR 0809773

Pták V. A uniform boundedness theorem and mappings into spaces of operators, Studia Math. 31 (1968), 425-431. (1968) | MR 0236672

Perez Carreras P.; Bonet J. Barrelled Locally Convex Spaces, North Holland, Amsterdam, 1987. | MR 0880207 | Zbl 0614.46001