The Antosik-Mikusinski Matrix Theorem is used to give an extension of a uniform boundedness principle due to V. Pták to certain metric linear spaces. An application to bilinear operators is given.
@article{118564, author = {Charles W. Swartz}, title = {A uniform boundedness principle of Pt\'ak}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {149-151}, zbl = {0799.46008}, mrnumber = {1240212}, language = {en}, url = {http://dml.mathdoc.fr/item/118564} }
Swartz, Charles W. A uniform boundedness principle of Pták. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 149-151. http://gdmltest.u-ga.fr/item/118564/
Matrix Methods in Analysis, Springer-Verlag, Heidelberg, 1985. | MR 0781343 | Zbl 0564.46001
An example of noncomplete normed $K$-spaces, Bull. Acad. Polon. Sci. 26 (1978), 415-420. (1978) | MR 0500088
Unbounded operators and a theorem of A. Robinson, Trans. Royal Soc. Canada 46 (1952), 33-37. (1952) | MR 0052533 | Zbl 0048.35205
Infinite Matrices of Operators, Springer-Verlag, Heidelberg, 1980. | MR 0568707 | Zbl 0424.40002
Automatic continuity, local type and casuality, Studia Math. 82 (1985), 61-90. (1985) | MR 0809773
A uniform boundedness theorem and mappings into spaces of operators, Studia Math. 31 (1968), 425-431. (1968) | MR 0236672
Barrelled Locally Convex Spaces, North Holland, Amsterdam, 1987. | MR 0880207 | Zbl 0614.46001