Besov spaces and function series on Lie groups
Skrzypczak, Leszek
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993), p. 139-147 / Harvested from Czech Digital Mathematics Library

In the paper we investigate the absolute convergence in the sup-norm of Harish-Chandra's Fourier series of functions belonging to Besov spaces defined on non-compact connected Lie groups.

Publié le : 1993-01-01
Classification:  22E30,  43A15,  46E35
@article{118563,
     author = {Leszek Skrzypczak},
     title = {Besov spaces and function series on Lie groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {34},
     year = {1993},
     pages = {139-147},
     zbl = {0842.46020},
     mrnumber = {1240211},
     language = {en},
     url = {http://dml.mathdoc.fr/item/118563}
}
Skrzypczak, Leszek. Besov spaces and function series on Lie groups. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 139-147. http://gdmltest.u-ga.fr/item/118563/

Chavel I. Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984. | MR 0768584 | Zbl 0551.53001

Harish-Chandra Discrete series for semi-simple Lie groups II, Acta Math. 116 (1966), 1-111. (1966) | MR 0219666

Price J.F. Lie Groups and Compact Groups, University Press, Cambridge, 1979. | MR 0450449 | Zbl 0348.22001

Robinson D.W. Lie groups and Lipschitz spaces, Duke J. Math. 57 (1988), 357-395. (1988) | MR 0962512 | Zbl 0687.46024

Robinson D.W. Lipschitz operators, J. Funct. Anal. 85 (1989), 179-211. (1989) | MR 1005861 | Zbl 0705.47037

Schmeisser H.J.; Triebel H. Topics in Fourier Analysis and Function Spaces, Wiley, Chichester, 1987. | MR 0891189 | Zbl 0661.46025

Skrzypczak L. Traces of function spaces $F_{p,q}^s- B_{p,q}^s$ type on submanifolds, Math. Nachr. 146 (1990), 137-147. (1990) | MR 1069056

Triebel H. Diffeomorphism properties and pointwise multiplier for function spaces, in: Function Spaces, Proc. Inter. Conf. Poznań 1986, Teubner-Texte, Leipzig, 1988, 75-84. | MR 1066519

Triebel H. Function spaces on Lie groups, the Riemannian approach, J. London Math. Soc. 35 (1987), 327-338. (1987) | MR 0881521 | Zbl 0587.46036

Triebel H. How to measure smoothness of distributions on Riemannian symmetric manifolds and Lie groups?, Zeitsch. Anal. ihre Anwend. 7 (1988), 471-480. (1988) | MR 0977967

Triebel H. Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Ark. Mat. 24 (1986), 299-337. (1986) | MR 0884191 | Zbl 0664.46026

Triebel H. Theory of Function Spaces, Birkhäuser, Basel, 1983. | MR 0781540 | Zbl 1104.46001

Warner B. Harmonic Analysis on Semi-simple Lie groups I, Springer-Verlag, Berlin, 1972. | MR 0498999 | Zbl 0265.22020