We prove existence and bifurcation results for a semilinear eigenvalue problem in $\Bbb R^N$ $(N\geq 2)$, where the linearization --- $\vartriangle $ has no eigenvalues. In particular, we show that under rather weak assumptions on the coefficients $\lambda =0$ is a bifurcation point for this problem in $H^1, H^2$ and $L^p$ $(2\leq p\leq \infty )$.
@article{118562, author = {Wolfgang Rother}, title = {Bifurcation for some semilinear elliptic equations when the linearization has no eigenvalues}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {34}, year = {1993}, pages = {125-138}, zbl = {0791.35094}, mrnumber = {1240210}, language = {en}, url = {http://dml.mathdoc.fr/item/118562} }
Rother, Wolfgang. Bifurcation for some semilinear elliptic equations when the linearization has no eigenvalues. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) pp. 125-138. http://gdmltest.u-ga.fr/item/118562/
Stability of time - dependent particle solutions in nonlinear field theories II, J. Math. Phys. 12 (1971), 945-952. (1971)
Nonlinear scalar field equations I: Existence of a ground state, Arch. Rat. Mech. Anal. 82 (1983), 313-345. (1983) | MR 0695535 | Zbl 0533.35029
Elliptic Partial Differential Equations of Second Order, SpringerVerlag, Berlin, Heidelberg, New York, 1983. | MR 0737190 | Zbl 1042.35002
Real and Abstract Analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1975. | MR 0367121 | Zbl 0307.28001
Bifurcation of nonlinear elliptic equations on $\Bbb R^N$, Bull. London Math. Soc. 21 (1989), 567-572. (1989) | MR 1018205
Bifurcation of nonlinear elliptic equations on $\Bbb R^N$ with radially symmetric coefficients, Manuscripta Math. 65 (1989), 413-426. (1989) | MR 1019700
The existence of infinitely many solutions all bifurcating from $\lambda =0$, Proc. Royal Soc. Edinburgh 118A (1991), 295-303. (1991) | MR 1121669 | Zbl 0748.35029
Nonlinear Scalar Field Equations, Differential and Integral Equations, to appear. | MR 1167494 | Zbl 0755.35082
The existence of infinitely bifurcation branches, Proc. Royal Soc. Edinburgh 101A (1985), 307-320. (1985)
Le probleème de Dirichlet pour les équations elliptique du second ordre à coefficients discontinues, Annls Inst. Fourier Univ. Grenoble 15 (1965), 189-257. (1965) | MR 0192177
Équations elliptiques du second ordre à coefficients discontinues, Séminaire de Mathématiques Supérieurs, No. 16, Montreal, 1965. | MR 0251373
Existence of solitary waves in higher dimensions, Commun. Math. Phys. 55 (1977), 149-162. (1977) | MR 0454365 | Zbl 0356.35028
Bifurcation from the continuous spectrum in the $L^2$ - theory of elliptic equations on $\Bbb R^N$, Recent Methods in Nonlinear Analysis and Applications, Proc. SAFA IV, Liguori, Napoli, 1981, pp. 231-300. | MR 0819032
Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc. (3) 45 (1982), 169-192. (1982) | MR 0662670 | Zbl 0505.35010
Bifurcation from the essential spectrum, Lecture Notes in Math. 1017 (1983), 575-596. (1983) | MR 0726615 | Zbl 0527.35010
Bifurcation in $L^p(\Bbb R^N)$ for a semilinear elliptic equation, Proc. London Math. Soc. (3) 57 (1988), 511-541. (1988) | MR 0960098
Bifurcation from the essential spectrum for some non-compact non-linearities, Math. Methods Appl. Sci. 11 (1989), 525-542. (1989) | MR 1001101
Bifurcation from the essential spectrum of superlinear elliptic equations, Appl. Analysis 28 (1988), 51-61. (1988) | MR 0960586 | Zbl 0621.35009